Epilepsy and Alterations of the Blood-Brain Barrier: Cause or Consequence of Epileptic Seizures or Both?

Wolfgang Löscher
Author Information
  1. Wolfgang Löscher: Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany. wolfgang.loescher@tiho-hannover.de.

Abstract

The blood-brain barrier (BBB) is a dynamic, highly selective barrier primarily formed by endothelial cells connected by tight junctions that separate the circulating blood from the brain extracellular fluid, thereby preserving a narrow and stable homeostatic control of the neuronal environment. The endothelial cells lining the brain microvessels are under the inductive influence of neighboring cell types within the "neurovascular unit" including astrocytes and pericytes. In addition to the morphological characteristics of the BBB, various specific transport systems, enzymes, and receptors regulate the molecular and cellular traffic across the barrier. Furthermore, the intact BBB prevents many macromolecules and immune cells from entering the brain. This changes dramatically following epileptogenic brain insults; such insults, among other BBB alterations, lead to albumin extravasation and diapedesis of leukocytes from blood into brain parenchyma, inducing or contributing to epileptogenesis, which finally leads to development of spontaneous recurrent seizures and epilepsy. Furthermore, seizures themselves may cause BBB disruption with albumin extravasation, which has been shown to be associated with activation of astrocytes, activation of innate immune systems, and modifications of neuronal networks. However, seizure-induced BBB disruption is not necessarily associated with enhanced drug penetration into the brain, because the BBB expression of multidrug efflux transporters such as P-glycoprotein increases, most likely as a "second line defense" mechanism to protect the brain from drug toxicity. Hopefully, a better understanding of the complex BBB alterations in response to seizures and epilepsy can lead to novel therapeutic intervention to prevent epileptogenesis and the development of other detrimental sequelae of brain injury.

Keywords

References

  1. Abbott NJ (2013) Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36:437–449 [PMID: 23609350]
  2. Abbott NJ, Khan EU, Rollinson CMS, Reichel A, Janigro D, Dombrowski SM, Dobbie MS, Begley DJ (2002) Drug resistance in epilepsy: the role of the blood-brain barrier. In: Ling V (ed) Mechanisms of drug resistance in epilepsy, Lessons from oncology. Wiley, Chichester, pp 38–46
  3. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25 [PMID: 19664713]
  4. Adkison KDK, Shen DD (1996) Uptake of valproic acid into rat brain is mediated by a medium- chain fatty acid transporter. J Pharmacol Exp Ther 276:1189–1200 [PMID: 8786552]
  5. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13 [PMID: 15207256]
  6. Bankstahl JP, Hoffmann K, Bethmann K, Löscher W (2008) Glutamate is critically involved in seizure-induced overexpression of P-glycoprotein in the brain. Neuropharmacology 54:1006–1016 [PMID: 18394657]
  7. Bankstahl M, Breuer H, Leiter I, Markel M, Bascunana P, Michalski D, Bengel FM, Löscher W, Meier M, Bankstahl JP, Härtig W (2018) Blood-brain barrier leakage during early Epileptogenesis is associated with rapid remodeling of the neurovascular unit. eNeuro 5:ENEURO.0123 [DOI: 10.1523/ENEURO.0123-18.2018]
  8. Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY, Wood L, Heinemann U, Kaufer D, Friedman A (2014) Losartan prevents acquired epilepsy via TGF-beta signaling suppression. Ann Neurol 75:864–875 [PMID: 24659129]
  9. Bar-Klein G, Lublinsky S, Kamintsky L, Noyman I, Veksler R, Dalipaj H, Senatorov VV Jr, Swissa E, Rosenbach D, Elazary N, Milikovsky DZ, Milk N, Kassirer M, Rosman Y, Serlin Y, Eisenkraft A, Chassidim Y, Parmet Y, Kaufer D, Friedman A (2017) Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain 140:1692–1705 [PMID: 28444141]
  10. Bauer KF, Lenhardt H (1956) A contribution to the pathological physiology of the blood-brain-barrier; megaphen stabilises the blood-brain-barrier. J Comp Neurol 106:363–370 [PMID: 13416398]
  11. Bauer KF, Leonhardt H (1955) Information on the hemato-encephalic barrier; cardiazole shock and barrier collapse. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr 193:68–77 [PMID: 14388746]
  12. Bauer B, Hartz AM, Pekcec A, Toellner K, Miller DS, Potschka H (2008) Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol 73:1444–1453 [PMID: 18094072]
  13. Bauer M, Karch R, Zeitlinger M, Liu J, Koepp MJ, Asselin MC, Sisodiya SM, Hainfellner JA, Wadsak W, Mitterhauser M, Muller M, Pataraia E, Langer O (2014) In vivo P-glycoprotein function before and after epilepsy surgery. Neurology 83:1326–1331 [PMID: 25186858]
  14. Brandt C, Bethmann K, Gastens AM, Löscher W (2006) The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis 24:202–211 [PMID: 16928449]
  15. Carvey PM (1998) Drug action in the central nervous system. Oxford University Press, New York
  16. Chung FS, Santiago JS, Jesus MF, Trinidad CV, See MF (2016) Disrupting P-glycoprotein function in clinical settings: what can we learn from the fundamental aspects of this transporter? Am J Cancer Res 6:1583–1598 [PMID: 27648351]
  17. Clarke HB, Gabrielsen TO (1989) Seizure induced disruption of blood-brain barrier demonstrated by CT. J Comput Assist Tomogr 13:889–892 [PMID: 2506256]
  18. Cornford EM (1999) Epilepsy and the blood brain barrier: endothelial cell responses to seizures. Adv Neurol 79:845–862 [PMID: 10514868]
  19. Cornford EM, Oldendorf WH (1986) Epilepsy and the blood-brain barrier. Adv Neurol 44:787–812 [PMID: 3085437]
  20. Corps KN, Roth TL, McGavern DB (2015) Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol 72:355–362 [PMID: 25599342]
  21. Coulter DA, Steinhauser C (2015) Role of astrocytes in epilepsy. Cold Spring Harb Perspect Med 5:a022434 [PMID: 25732035]
  22. Duncan R, Todd N (1991) Epilepsy and the blood-brain barrier. Br J Hosp Med 45:32–34 [PMID: 2009437]
  23. Ehrlich P (1885) Das Sauerstoffbedürfnis des Organismus. Eine farbanalytische Studie. Hirschwald-Verlag, Berlin
  24. Elst LV, Chapelle F, Laurent S, Muller RN (2001) Stereospecific binding of MRI contrast agents to human serum albumin: the case of Gd-(S)-EOB-DTPA (Eovist) and its (R) isomer. J Biol Inorg Chem 6:196–200 [DOI: 10.1007/s007750000195]
  25. Engelhardt B, Carare RO, Bechmann I, Flugel A, Laman JD, Weller RO (2016) Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 132:317–338 [PMID: 27522506]
  26. Fabene PF, Navarro MG, Martinello M, Rossi B, Merigo F, Ottoboni L, Bach S, Angiari S, Benati D, Chakir A, Zanetti L, Schio F, Osculati A, Marzola P, Nicolato E, Homeister JW, Xia L, Lowe JB, McEver RP, Osculati F, Sbarbati A, Butcher EC, Constantin G (2008) A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 14:1377–1383 [PMID: 19029985]
  27. Feldmann M, Asselin MC, Liu J, Wang S, McMahon A, Anton-Rodriguez J, Walker M, Symms M, Brown G, Hinz R, Matthews J, Bauer M, Langer O, Thom M, Jones T, Vollmar C, Duncan JS, Sisodiya SM, Koepp MJ (2013) P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurol 12:777–785 [PMID: 23786896]
  28. Feng ZH, Hao J, Ye L, Dayao C, Yan N, Yan Y, Chu L, Shi FD (2011) Overexpression of mu-calpain in the anterior temporal neocortex of patients with intractable epilepsy correlates with clinicopathological characteristics. Seizure 20:395–401 [PMID: 21315622]
  29. Fieschi C, Lenzi GL, Zanette E, Orzi F, Passero S (1980) Effects on EEG of the osmotic opening of the blood-brain barrier in rats. Life Sci 27:239–243 [PMID: 6772908]
  30. Frey H-H, Löscher W (1978) Distribution of valproate across the interface between blood and cerebrospinal fluid. Neuropharmacology 17:637–642 [PMID: 358007]
  31. Friedman A, Heinemann U (2012) Role of blood-brain barrier dysfunction in epileptogenesis. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies, 4th edn. National Center for Biotechnology Information, Bethesda, pp 1–12
  32. Friedman A, Kaufer D, Heinemann U (2009) Blood-brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res 85:142–149 [PMID: 19362806]
  33. Friedman A, Bar-Klein G, Serlin Y, Parmet Y, Heinemann U, Kaufer D (2014) Should losartan be administered following brain injury? Expert Rev Neurother 14:1365–1375 [PMID: 25346269]
  34. Ghosh C, Puvenna V, Gonzalez-Martinez J, Janigro D, Marchi N (2011) Blood-brain barrier P 450 enzymes and multidrug transporters in drug resistance: a synergistic role in neurological diseases. Curr. Drug Metab 12:742–749 [DOI: 10.2174/138920011798357051]
  35. Giannoni P, Badaut J, Dargazanli C, De Maudave AF, Klement W, Costalat V, Marchi N (2018) The pericyte-glia interface at the blood-brain barrier. Clin Sci (Lond) 132:361–374 [DOI: 10.1042/CS20171634]
  36. Heinemann U, Kaufer D, Friedman A (2012) Blood-brain barrier dysfunction, TGFbeta signaling, and astrocyte dysfunction in epilepsy. Glia 60:1251–1257 [PMID: 22378298]
  37. Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17–42 [PMID: 28957666]
  38. Ilyas-Feldmann M, Asselin MC, Wang S, McMahon A, Anton-Rodriguez J, Brown G, Hinz R, Duncan JS, Sisodiya SM, Koepp M (2020) P-glycoprotein overactivity in epileptogenic developmental lesions measured in vivo using (R)-[(11) C]verapamil PET. Epilepsia 61:1472–1480 [PMID: 32627849]
  39. Imhof BA, Dunon D (1997) Basic mechanism of leukocyte migration. Horm Metab Res 29:614–621 [PMID: 9497898]
  40. Jabs R, Seifert G, Steinhauser C (2008) Astrocytic function and its alteration in the epileptic brain. Epilepsia 49(Suppl 2):3–12 [PMID: 18226167]
  41. Jasper HH (1970) Physiopathological mechanisms of post-traumatic epilepsy. Epilepsia 11:73–80 [PMID: 4987162]
  42. Kang EJ, Major S, Jorks D, Reiffurth C, Offenhauser N, Friedman A, Dreier JP (2013) Blood-brain barrier opening to large molecules does not imply blood-brain barrier opening to small ions. Neurobiol Dis 52:204–218 [PMID: 23291193]
  43. Käufer C, Chatbar C, Bröer S, Waltl I, Luca G, Gerhauser I, Kalinke U, Löscher W (2018) Chemokine receptors CCR2 and CX3CR1 regulate viral encephalitis-induced hippocampal damage but not seizures. Proc Natl Acad Sci U S A 115:E8929–E8938 [PMID: 30181265]
  44. Kawakami N, Flugel A (2010) Knocking at the brain's door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures. Semin Immunopathol 32:275–287 [PMID: 20623286]
  45. Klein P, Dingledine R, Aronica E, Bernard C, Blümcke I, Boison D, Brodie MJ, Brooks-Kayal AR, Engel J Jr, Forcelli PA, Hirsch LJ, Kaminski RM, Klitgaard H, Kobow K, Lowenstein DH, Pearl PL, Pitkänen A, Puhakka N, Rogawski MA, Schmidt D, Sillanpää M, Sloviter RS, Steinhauser C, Vezzani A, Walker MC, Löscher W (2018) Commonalities in epileptogenic processes from different acute brain insults: do they translate? Epilepsia 59:37–66 [PMID: 29247482]
  46. Klement W, Garbelli R, Zub E, Rossini L, Tassi L, Girard B, Blaquiere M, Bertaso F, Perroy J, de Bock F, Marchi N (2018) Seizure progression and inflammatory mediators promote pericytosis and pericyte-microglia clustering at the cerebrovasculature. Neurobiol Dis 113:70–81 [PMID: 29432809]
  47. Langer HF, Chavakis T (2009) Leukocyte-endothelial interactions in inflammation. J Cell Mol Med 13:1211–1220 [PMID: 19538472]
  48. Laxer KD, Trinka E, Hirsch LJ, Cendes F, Langfitt J, Delanty N, Resnick T, Benbadis SR (2014) The consequences of refractory epilepsy and its treatment. Epilepsy Behav 37:59–70 [PMID: 24980390]
  49. Lischper M, Beuck S, Thanabalasundaram G, Pieper C, Galla HJ (2010) Metalloproteinase mediated occludin cleavage in the cerebral microcapillary endothelium under pathological conditions. Brain Res 1326:114–127 [PMID: 20197061]
  50. Liu JY, Thom M, Catarino CB, Martinian L, Figarella-Branger D, Bartolomei F, Koepp M, Sisodiya SM (2012) Neuropathology of the blood-brain barrier and pharmaco-resistance in human epilepsy. Brain 135:3115–3133 [PMID: 22750659]
  51. Löscher W (2016) Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res 126:157–184 [PMID: 27505294]
  52. Löscher W, Friedman A (2020) Structural, molecular and functional alterations of the blood-brain barrier during epileptogenesis and epilepsy: a cause, consequence or both? Int J Mol Sci 21:591 [>PMCID: ]
  53. Löscher W, Potschka H (2005a) Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 76:22–76 [PMID: 16011870]
  54. Löscher W, Potschka H (2005b) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6:591–602 [PMID: 16025095]
  55. Löscher W, Schmidt D (2011) Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 52:657–678 [PMID: 21426333]
  56. Löscher W, Luna-Tortós C, Römermann K, Fedrowitz M (2011) Do ATP-binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected. Curr Pharm Des 17:2808–2828 [PMID: 21827408]
  57. Löscher W, Klitgaard H, Twyman RE, Schmidt D (2013) New avenues for antiepileptic drug discovery and development. Nat Rev Drug Discov 12:757–776 [PMID: 24052047]
  58. Löscher W, Potschka H, Sisodiya SM, Vezzani A (2020) Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev 72:606–638 [PMID: 32540959]
  59. Luna-Tortós C, Fedrowitz M, Löscher W (2010) Evaluation of transport of common antiepileptic drugs by human multidrug resistance-associated proteins (MRP1, 2 and 5) that are overexpressed in pharmacoresistant epilepsy. Neuropharmacology 58:1019–1032 [PMID: 20080116]
  60. Man S, Ubogu EE, Ransohoff RM (2007) Inflammatory cell migration into the central nervous system: a few new twists on an old tale. Brain Pathol 17:243–250 [PMID: 17388955]
  61. Marchi N, Lerner-Natoli M (2013) Cerebrovascular remodeling and epilepsy. Neuroscientist 19:304–312 [PMID: 23072899]
  62. Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N, Hallene K, Diglaw T, Franic L, Najm I, Janigro D (2007) Seizure-promoting effect of blood-brain barrier disruption. Epilepsia 48:732–742 [PMID: 17319915]
  63. Marchi N, Betto G, Fazio V, Fan Q, Ghosh C, Machado A, Janigro D (2009) Blood-brain barrier damage and brain penetration of antiepileptic drugs: role of serum proteins and brain edema. Epilepsia 50:664–677 [PMID: 19175391]
  64. Marchi N, Granata T, Ghosh C, Janigro D (2012) Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia 53:1877–1886 [PMID: 22905812]
  65. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Paolini MA, Murray DL, Williamson EE, Eckel LJ (2017) Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology 285:546–554 [PMID: 28653860]
  66. Miller DS, Bauer B, Hartz AMS (2008) Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve CNS pharmacotherapy. Pharmacol Rev 60:196–209 [PMID: 18560012]
  67. Minogue AM (2017) Role of infiltrating monocytes/macrophages in acute and chronic neuroinflammation: effects on cognition, learning and affective behaviour. Prog Neuropsychopharmacol Biol Psychiatry 79:15–18 [PMID: 28189704]
  68. Montagne A, Toga AW, Zlokovic BV (2016) Blood-brain barrier permeability and gadolinium: benefits and potential pitfalls in research. JAMA Neurol 73:13–14 [PMID: 26524294]
  69. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596 [PMID: 24309662]
  70. Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C, Lodygin D, Heckelsmiller K, Nietfeld W, Ellwart J, Klinkert WE, Lottaz C, Nosov M, Brinkmann V, Spang R, Lehrach H, Vingron M, Wekerle H, Flugel-Koch C, Flugel A (2012) T cells become licensed in the lung to enter the central nervous system. Nature 488:675–679 [PMID: 22914092]
  71. Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12:54–61 [PMID: 17198973]
  72. Pekcec A, Unkrüer B, Schlichtiger J, Soerensen J, Hartz AMS, Bauer B, van Vliet EA, Gorter JA, Potschka H (2009) Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation. J Pharmacol Exp Ther 330:939–947
  73. Pitsch J, Kuehn JC, Gnatkovsky V, Muller JA, van Loo KMJ, De Curtis M, Vatter H, Schoch S, Elger CE, Becker AJ (2019) Anti-epileptogenic and anti-convulsive effects of Fingolimod in experimental temporal lobe epilepsy. Mol Neurobiol 56:1825–1840 [PMID: 29934763]
  74. Potschka H, Löscher W (2002) A comparison of extracellular levels of phenytoin in amygdala and hippocampus of kindled and non-kindled rats. Neuroreport 13:167–171 [PMID: 11924882]
  75. Potschka H, Baltes S, Fedrowitz M, Löscher W (2011) Impact of seizure activity on free extracellular phenytoin concentrations in amygdala-kindled rats. Neuropharmacology 61:909–917 [PMID: 21736886]
  76. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312 [PMID: 24713688]
  77. Prinz M, Priller J (2017) The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci 20:136–144 [PMID: 28092660]
  78. Rambeck B, Jürgens UH, May TW, Pannek HW, Behne F, Ebner A, Gorji A, Straub H, Speckmann EJ, Pohlmann-Eden B, Löscher W (2006) Comparison of brain extracellular fluid, brain tissue, cerebrospinal fluid, and serum concentrations of antiepileptic drugs measured intraoperatively in patients with intractable epilepsy. Epilepsia 47:681–694 [PMID: 16650134]
  79. Ravizza T, Vezzani A (2018) Pharmacological targeting of brain inflammation in epilepsy: therapeutic perspectives from experimental and clinical studies. Epilepsia Open 3:133–142 [PMID: 30564772]
  80. Rempe RG, Hartz AMS, Soldner ELB, Sokola BS, Alluri SR, Abner EL, Kryscio RJ, Pekcec A, Schlichtiger J, Bauer B (2018) Matrix metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy. J Neurosci 38:4301–4315 [PMID: 29632167]
  81. Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A, Lerner-Natoli M (2007) Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain 130:1942–1956 [PMID: 17533168]
  82. Römermann K, Helmer R, Löscher W (2015) The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2). Neuropharmacology 93:7–14 [PMID: 25645391]
  83. Rossi B, Angiari S, Zenaro E, Budui SL, Constantin G (2011) Vascular inflammation in central nervous system diseases: adhesion receptors controlling leukocyte-endothelial interactions. J Leukoc Biol 89:539–556 [PMID: 21169520]
  84. Rüber T, David B, Luchters G, Nass RD, Friedman A, Surges R, Stocker T, Weber B, Deichmann R, Schlaug G, Hattingen E, Elger CE (2018) Evidence for peri-ictal blood-brain barrier dysfunction in patients with epilepsy. Brain 141:2952–2965 [PMID: 30239618]
  85. Seelig A (2007) The role of size and charge for blood-brain barrier permeation of drugs and fatty acids. J Mol Neurosci 33:32–41 [PMID: 17901543]
  86. Shin JW, Chu K, Shin SA, Jung KH, Lee ST, Lee YS, Moon J, Lee DY, Lee JS, Lee DS, Lee SK (2016) Clinical applications of simultaneous PET/MR imaging using (R)-[11C]-verapamil with Cyclosporin A: preliminary results on a surrogate marker of drug-resistant epilepsy. AJNR Am J Neuroradiol 37:600–606 [PMID: 26585254]
  87. Stern L (1921) Le liquide céfalo-rachidien au point de vue de ses rapports avec la circulation sanguine et avec les éléments nerveux de l'axe cérébrospinal. Schweiz Arch Neurol Psychiatr 8:215–232
  88. Tang F, Hartz AMS, Bauer B (2017) Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol 8:301 [PMID: 28729850]
  89. Tishler DM, Weinberg KT, Hinton DR, Barbaro N, Annett GM, Raffel C (1995) MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 36:1–6 [PMID: 8001500]
  90. Tomkins O, Shelef I, Kaizerman I, Eliushin A, Afawi Z, Misk A, Gidon M, Cohen A, Zumsteg D, Friedman A (2008) Blood-brain barrier disruption in post-traumatic epilepsy. J Neurol Neurosurg Psychiatry 79:774–777 [PMID: 17991703]
  91. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T (2011) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117:333–345 [PMID: 21291474]
  92. van Vliet EA, Aronica E, Gorter JA (2015) Blood-brain barrier dysfunction, seizures and epilepsy. Semin Cell Dev Biol 38:26–34 [PMID: 25444846]
  93. van Vliet EA, Dedeurwaerdere S, Cole AJ, Friedman A, Koepp MJ, Potschka H, Immonen R, Pitkanen A, Federico P (2017) WONOEP appraisal: imaging biomarkers in epilepsy. Epilepsia 58:315–330 [PMID: 27883181]
  94. Varvel NH, Neher JJ, Bosch A, Wang W, Ransohoff RM, Miller RJ, Dingledine R (2016) Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc Natl Acad Sci U S A 113:E5665–E5674 [PMID: 27601660]
  95. Vezzani A, Friedman A, Dingledine RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacology 69:16–24 [PMID: 22521336]
  96. Wilhelm I, Nyul-Toth A, Suciu M, Hermenean A, Krizbai IA (2016) Heterogeneity of the blood-brain barrier. Tissue Barriers 4:e1143544 [PMID: 27141424]
  97. Xhima K, Weber-Adrian D, Silburt J (2016) Glutamate induces blood-brain barrier permeability through activation of N-methyl-D-aspartate receptors. J Neurosci 36:12296–12298 [PMID: 27927949]
  98. Zattoni M, Mura ML, Deprez F, Schwendener RA, Engelhardt B, Frei K, Fritschy JM (2011) Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci 31:4037–4050 [PMID: 21411646]
  99. Zhang C, Kwan P, Zuo Z, Baum L (2012) The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev 64:930–942 [PMID: 22197850]
  100. Zibell G, Unkruer B, Pekcec A, Hartz AM, Bauer B, Miller DS, Potschka H (2009) Prevention of seizure-induced up-regulation of endothelial P-glycoprotein by COX-2 inhibition. Neuropharmacology 56:849–855 [PMID: 19371577]

MeSH Term

Albumins
Blood-Brain Barrier
Endothelial Cells
Epilepsy
Humans
Seizures

Chemicals

Albumins

Word Cloud

Created with Highcharts 10.0.0BBBbrainbarriercellsseizuresendothelialjunctionsbloodneuronalastrocytessystemsFurthermoreimmuneinsultsalterationsleadalbuminextravasationepileptogenesisdevelopmentepilepsydisruptionassociatedactivationdrugP-glycoproteinblood-braindynamichighlyselectiveprimarilyformedconnectedtightseparatecirculatingextracellularfluidtherebypreservingnarrowstablehomeostaticcontrolenvironmentliningmicrovesselsinductiveinfluenceneighboringcelltypeswithin"neurovascularunit"includingpericytesadditionmorphologicalcharacteristicsvariousspecifictransportenzymesreceptorsregulatemolecularcellulartrafficacrossintactpreventsmanymacromoleculesenteringchangesdramaticallyfollowingepileptogenicamongdiapedesisleukocytesparenchymainducingcontributingfinallyleadsspontaneousrecurrentmaycauseshowninnatemodificationsnetworksHoweverseizure-inducednecessarilyenhancedpenetrationexpressionmultidrugeffluxtransportersincreaseslikely"secondlinedefense"mechanismprotecttoxicityHopefullybetterunderstandingcomplexresponsecannoveltherapeuticinterventionpreventdetrimentalsequelaeinjuryEpilepsyAlterationsBlood-BrainBarrier:CauseConsequenceEpilepticSeizuresBoth?AlbuminAntiepilepticdrugsEpileptogenesisTight

Similar Articles

Cited By