Struggle To Survive: the Choir of Target Alteration, Hydrolyzing Enzyme, and Plasmid Expression as a Novel Aztreonam-Avibactam Resistance Mechanism.

Ke Ma, Yu Feng, Alan McNally, Zhiyong Zong
Author Information
  1. Ke Ma: Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  2. Yu Feng: Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China. ORCID
  3. Alan McNally: Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
  4. Zhiyong Zong: Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China zongzhiy@scu.edu.cn. ORCID

Abstract

Aztreonam-avibactam is a promising antimicrobial combination against multidrug-resistant organisms, such as carbapenemase-producing Resistance to Aztreonam-avibactam has been found, but the resistance mechanism remains poorly studied. We recovered three isolates of an almost identical genome but exhibiting varied Aztreonam-avibactam resistance. The isolates carried a cephalosporinase gene, , on IncIγ plasmids with a single-nucleotide variation in an antisense RNA-encoding gene, , of the replicon. The isolates also had four extra amino acids (YRIK) in penicillin-binding protein 3 (PBP3) due to a duplication of a 12-nucleotide (TATCGAATTAAC) stretch in By cloning and plasmid-curing experiments, we found that elevated CMY-42 cephalosporinase production or amino acid insertions in PBP3 alone mediated slightly reduced susceptibility to Aztreonam-avibactam, but their combination conferred Aztreonam-avibactam resistance. We show that the elevated CMY-42 production results from increased plasmid copy numbers due to mutations in We also verified the findings using mutation assays, in which Aztreonam-avibactam-resistant mutants also had mutations in and elevated CMY-42 production compared with the parental strain. This choir of target modification, hydrolyzing enzyme, and plasmid expression represents a novel, coordinated, complex antimicrobial resistance mechanism and also reflects the struggle of bacteria to survive under selection pressure imposed by antimicrobial agents. Carbapenemase-producing (CPE) is a serious global challenge with limited therapeutic options. Aztreonam-avibactam is a promising antimicrobial combination with activity against CPE producing serine-based carbapenemases and metallo-β-lactamases and has the potential to be a major option for combatting CPE. Aztreonam-avibactam resistance has been found, but resistance mechanisms remain largely unknown. Understanding resistance mechanisms is essential for optimizing treatment and developing alternative therapies. Here, we found that either penicillin-binding protein 3 modification or the elevated expression of cephalosporinase CMY-42 due to increased plasmid copy numbers does not confer resistance to Aztreonam-avibactam, but their combination does. We demonstrate that increased plasmid copy numbers result from mutations in antisense RNA-encoding of the IncIγ replicon. The findings reveal that antimicrobial resistance may be due to concerted combinatorial effects of target alteration, hydrolyzing enzyme, and plasmid expression and also highlight that resistance to any antimicrobial combination will inevitably emerge.

Keywords

References

  1. J Antimicrob Chemother. 2020 Mar 1;75(3):559-565 [PMID: 31722380]
  2. Lancet Infect Dis. 2013 Dec;13(12):1057-98 [PMID: 24252483]
  3. Commun Biol. 2019 Aug 29;2:322 [PMID: 31482141]
  4. Nat Commun. 2020 Apr 24;11(1):2029 [PMID: 32332717]
  5. Plasmid. 2000 Mar;43(2):149-52 [PMID: 10686134]
  6. Trends Microbiol. 2011 Dec;19(12):588-95 [PMID: 22078325]
  7. J Antimicrob Chemother. 2015 May;70(5):1420-8 [PMID: 25634992]
  8. Antimicrob Agents Chemother. 2009 Aug;53(8):3520-3 [PMID: 19470510]
  9. Emerg Infect Dis. 2005 Jun;11(6):794-801 [PMID: 15963271]
  10. Emerg Infect Dis. 2011 Oct;17(10):1791-8 [PMID: 22000347]
  11. EMBO J. 1998 Sep 1;17(17):5201-13 [PMID: 9724656]
  12. Int J Antimicrob Agents. 2007 May;29 Suppl 3:S9-S22 [PMID: 17659212]
  13. Plasmid. 2005 Mar;53(2):97-112 [PMID: 15737397]
  14. Antimicrob Agents Chemother. 2011 Jan;55(1):390-4 [PMID: 21041502]
  15. Antimicrob Agents Chemother. 2014 Oct;58(10):5704-13 [PMID: 25022578]
  16. PLoS Comput Biol. 2017 Jun 8;13(6):e1005595 [PMID: 28594827]
  17. Antimicrob Agents Chemother. 2002 Feb;46(2):500-10 [PMID: 11796363]
  18. J Antimicrob Chemother. 2020 Feb 1;75(2):384-391 [PMID: 31742604]
  19. J Antimicrob Chemother. 2012 Feb;67(2):339-45 [PMID: 22117029]
  20. Sci Transl Med. 2020 Jun 24;12(549): [PMID: 32581135]
  21. Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11663-8 [PMID: 22753474]
  22. Res Microbiol. 2000 Apr;151(3):201-8 [PMID: 10865947]
  23. BMC Genomics. 2011 Aug 08;12:402 [PMID: 21824423]
  24. J Biol Chem. 1998 May 8;273(19):11826-38 [PMID: 9565607]
  25. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  26. Antimicrob Agents Chemother. 2014 Jul;58(7):3895-903 [PMID: 24777092]
  27. Nucleic Acids Res. 2019 Jul 2;47(W1):W636-W641 [PMID: 30976793]
  28. Microb Drug Resist. 2011 Jun;17(2):165-9 [PMID: 21388298]
  29. Genome Res. 2015 Jul;25(7):1043-55 [PMID: 25977477]
  30. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  31. Sci Rep. 2015 Jul 21;5:12275 [PMID: 26194736]
  32. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  33. Antimicrob Agents Chemother. 2007 Jul;51(7):2621-4 [PMID: 17470659]
  34. Antimicrob Agents Chemother. 2019 Oct 22;63(11): [PMID: 31427293]
  35. Antimicrob Agents Chemother. 2009 Dec;53(12):5046-54 [PMID: 19770275]
  36. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  37. Clin Microbiol Infect. 2012 May;18(5):413-31 [PMID: 22507109]
  38. Antimicrob Agents Chemother. 2017 Jul 25;61(8): [PMID: 28559260]
  39. Nucleic Acids Res. 2015 Feb 18;43(3):e15 [PMID: 25414349]

Word Cloud

Created with Highcharts 10.0.0resistanceantimicrobialaztreonam-avibactamplasmidcombinationalsofounddueelevatedCMY-42copyAztreonam-avibactamisolatescephalosporinasepenicillin-bindingproteinproductionincreasednumbersmutationsexpressionCPEpromisingResistancemechanismgeneIncIγantisenseRNA-encodingrepliconamino3PBP3findingstargetmodificationhydrolyzingenzymemechanismsmultidrug-resistantorganismscarbapenemase-producingremainspoorlystudiedrecoveredthreealmostidenticalgenomeexhibitingvariedcarriedplasmidssingle-nucleotidevariationfourextraacidsYRIKduplication12-nucleotideTATCGAATTAACstretchcloningplasmid-curingexperimentsacidinsertionsalonemediatedslightlyreducedsusceptibilityconferredshowresultsverifiedusingmutationassaysaztreonam-avibactam-resistantmutantscomparedparentalstrainchoirrepresentsnovelcoordinatedcomplexreflectsstrugglebacteriasurviveselectionpressureimposedagentsCarbapenemase-producingseriousglobalchallengelimitedtherapeuticoptionsactivityproducingserine-basedcarbapenemasesmetallo-β-lactamasespotentialmajoroptioncombattingremainlargelyunknownUnderstandingessentialoptimizingtreatmentdevelopingalternativetherapieseitherconferdemonstrateresultrevealmayconcertedcombinatorialeffectsalterationhighlightwillinevitablyemergeStruggleSurvive:ChoirTargetAlterationHydrolyzingEnzymePlasmidExpressionNovelAztreonam-AvibactamMechanismCMYEscherichiacoliantibioticavibactamaztreonamnumber

Similar Articles

Cited By (16)