Effects of Scale on Modeling West Nile Virus Disease Risk.

Johnny A Uelmen, Patrick Irwin, Dan Bartlett, William Brown, Surendra Karki, Marilyn O'Hara Ruiz, Jennifer Fraterrigo, Bo Li, Rebecca L Smith
Author Information
  1. Johnny A Uelmen: 1Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  2. Patrick Irwin: 2Northwest Mosquito Abatement, Wheeling, Illinois.
  3. Dan Bartlett: 2Northwest Mosquito Abatement, Wheeling, Illinois.
  4. William Brown: 1Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  5. Surendra Karki: 1Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  6. Marilyn O'Hara Ruiz: 1Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  7. Jennifer Fraterrigo: 4Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  8. Bo Li: 5Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois.
  9. Rebecca L Smith: 1Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois.

Abstract

Modeling vector-borne diseases is best conducted when heterogeneity among interacting biotic and abiotic processes is captured. However, the successful integration of these complex processes is difficult, hindered by a lack of understanding of how these relationships influence disease transmission across varying scales. West Nile virus (WNV) is the most important mosquito-borne disease in the United States. Vectored by mosquitoes and maintained in the environment by avian hosts, the virus can spill over into humans and horses, sometimes causing severe neuroinvasive illness. Several modeling studies have evaluated drivers of WNV disease risk, but nearly all have done so at broad scales and have reported mixed results of the effects of common explanatory variables. As a result, fine-scale relationships with common explanatory variables, particularly climatic, socioeconomic, and human demographic, remain uncertain across varying spatial extents. Using an interdisciplinary approach and an ongoing 12-year study of the Chicago region, this study evaluated the factors explaining WNV disease risk at high spatiotemporal resolution, comparing the human WNV model and covariate performance across three increasing spatial extents: ultrafine, local, and county scales. Our results demonstrate that as spatial extent increased, model performance increased. In addition, only six of the 23 assessed covariates were included in best-fit models of at least two scales. These results suggest that the mechanisms driving WNV ecology are scale-dependent and covariate importance increases as extent decreases. These tools may be particularly helpful for public health, mosquito, and disease control personnel in predicting and preventing disease within local and fine-scale jurisdictions, before spillover occurs.

References

  1. Emerg Infect Dis. 2001 Jul-Aug;7(4):611-4 [PMID: 11585520]
  2. Environ Health Perspect. 2001 Mar;109 Suppl 1:141-61 [PMID: 11250812]
  3. Clin Microbiol Rev. 2012 Oct;25(4):635-48 [PMID: 23034323]
  4. Annu Rev Phytopathol. 2012;50:379-402 [PMID: 22681449]
  5. Nature. 2005 Nov 17;438(7066):310-7 [PMID: 16292302]
  6. Am J Epidemiol. 2013 Sep 1;178(5):829-35 [PMID: 23825164]
  7. J Med Entomol. 2008 May;45(3):445-51 [PMID: 18533438]
  8. Emerg Infect Dis. 2001 Jul-Aug;7(4):670-4 [PMID: 11585530]
  9. Int J Health Geogr. 2007 Mar 12;6:10 [PMID: 17352825]
  10. Curr Opin Infect Dis. 2007 Jun;20(3):293-7 [PMID: 17471040]
  11. J Med Entomol. 2014 Mar;51(2):297-313 [PMID: 24724278]
  12. J Theor Biol. 2016 Jul 7;400:65-79 [PMID: 27084359]
  13. Ecol Lett. 2015 Oct;18(10):1119-33 [PMID: 26261049]
  14. Am J Trop Med Hyg. 2015 May;92(5):1013-22 [PMID: 25802435]
  15. Trends Immunol. 2001 Apr;22(4):171-2 [PMID: 11274908]
  16. Annu Rev Entomol. 2008;53:61-81 [PMID: 17645411]
  17. Geospat Health. 2006 Nov;1(1):49-58 [PMID: 17476311]
  18. Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13384-9 [PMID: 17686977]
  19. Am J Trop Med Hyg. 2009 Feb;80(2):268-78 [PMID: 19190226]
  20. Lancet Infect Dis. 2004 Sep;4(9):547-56 [PMID: 15336221]
  21. JAMA. 2013 Jul 17;310(3):308-15 [PMID: 23860989]
  22. J Med Entomol. 2019 Oct 28;56(6):1508-1515 [PMID: 31549727]
  23. PLoS One. 2020 Mar 9;15(3):e0229927 [PMID: 32150586]
  24. PLoS One. 2021 May 19;16(5):e0251517 [PMID: 34010306]
  25. Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):E3359-64 [PMID: 27247398]
  26. Int J Health Geogr. 2004 Apr 20;3(1):8 [PMID: 15099399]
  27. Vector Borne Zoonotic Dis. 2006 Spring;6(1):73-82 [PMID: 16584329]
  28. Lancet Infect Dis. 2009 Jun;9(6):365-75 [PMID: 19467476]
  29. J Insect Sci. 2010;10:110 [PMID: 20874412]
  30. J Med Entomol. 2019 Oct 28;56(6):1475-1490 [PMID: 31549725]
  31. Oecologia. 2009 Mar;159(2):415-24 [PMID: 19034529]
  32. J Infect Dis. 2016 Dec 1;214(suppl_4):S375-S379 [PMID: 28830113]
  33. PLoS Curr. 2014 May 30;6: [PMID: 25914857]
  34. J Med Entomol. 2015 Sep;52(5):1083-9 [PMID: 26336222]
  35. PLoS One. 2019 Jun 3;14(6):e0217854 [PMID: 31158250]
  36. Parasit Vectors. 2010 Mar 19;3(1):19 [PMID: 20302617]
  37. Emerg Infect Dis. 2002 Dec;8(12):1385-91 [PMID: 12498652]
  38. Oecologia. 2009 Jan;158(4):699-708 [PMID: 18941794]
  39. Sci Adv. 2016 Jun 10;2(6):e1600377 [PMID: 27386582]
  40. Ecology. 2009 Apr;90(4):888-900 [PMID: 19449681]
  41. PLoS One. 2017 Aug 22;12(8):e0183568 [PMID: 28829827]
  42. PLoS One. 2020 May 21;15(5):e0227160 [PMID: 32437363]
  43. J Med Entomol. 2010 Mar;47(2):230-7 [PMID: 20380305]
  44. Ecol Lett. 2016 Sep;19(9):1159-71 [PMID: 27353433]
  45. Am J Trop Med Hyg. 2014 Oct;91(4):677-684 [PMID: 25092814]
  46. Ecol Lett. 2006 Apr;9(4):485-98 [PMID: 16623733]
  47. Parasit Vectors. 2014 Jul 16;7:333 [PMID: 25030527]
  48. Vector Borne Zoonotic Dis. 2007 Summer;7(2):173-80 [PMID: 17627435]
  49. Parasit Vectors. 2014 Jun 12;7:269 [PMID: 24924622]
  50. Emerg Infect Dis. 2006 Mar;12(3):468-74 [PMID: 16704786]

MeSH Term

Demography
Humans
Illinois
Models, Biological
Risk Factors
West Nile Fever

Word Cloud

Created with Highcharts 10.0.0diseaseWNVscalesacrossresultsspatialModelingprocessesrelationshipsvaryingWestNilevirusevaluatedriskcommonexplanatoryvariablesfine-scaleparticularlyhumanstudymodelcovariateperformancelocalextentincreasedvector-bornediseasesbestconductedheterogeneityamonginteractingbioticabioticcapturedHoweversuccessfulintegrationcomplexdifficulthinderedlackunderstandinginfluencetransmissionimportantmosquito-borneUnitedStatesVectoredmosquitoesmaintainedenvironmentavianhostscanspillhumanshorsessometimescausingsevereneuroinvasiveillnessSeveralmodelingstudiesdriversnearlydonebroadreportedmixedeffectsresultclimaticsocioeconomicdemographicremainuncertainextentsUsinginterdisciplinaryapproachongoing12-yearChicagoregionfactorsexplaininghighspatiotemporalresolutioncomparingthreeincreasingextents:ultrafinecountydemonstrateadditionsix23assessedcovariatesincludedbest-fitmodelsleasttwosuggestmechanismsdrivingecologyscale-dependentimportanceincreasesdecreasestoolsmayhelpfulpublichealthmosquitocontrolpersonnelpredictingpreventingwithinjurisdictionsspilloveroccursEffectsScaleVirusDiseaseRisk

Similar Articles

Cited By (7)