Impact of acute exercise on immediate and following early post-exercise FGF-21 concentration in adults: systematic review and meta-analysis.

Mousa Khalafi, Karim Azali Alamdari, Michael E Symonds, Hadi Nobari, Jorge Carlos-Vivas
Author Information
  1. Mousa Khalafi: Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, 4199613776, Iran. mousa.khalafi@ut.ac.ir. ORCID
  2. Karim Azali Alamdari: Department of Sport Sciences, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran. k.azali@azaruniv.ac.ir.
  3. Michael E Symonds: The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, and Nottingham Digestive Disease Centre and Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
  4. Hadi Nobari: Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran.
  5. Jorge Carlos-Vivas: Health, Economy, Motricity and Education Research Group (HEME), Faculty of Sport Sciences, University of Extremadura, 10003, Caceres, Spain.

Abstract

PURPOSE/OBJECTIVE: The aim of this study was to quantify circulating fibroblast growth factor 21 (FGF-21) changes during and immediately after acute exercise and, based on body weight, to identify the subgroups exhibiting the largest response.
METHODS: The PubMed, Web of Science, and Cochrane Library electronic databases were searched up to December 2019 for studies published in English peer-reviewed journals. Studies that evaluated the effects of acute exercise on FGF-21 concentrations immediately after and 1 and 3 h post-exercise in adults were included. Random effects models were used for analyses, with data reported as standardized mean difference (SMD) and 95% confidence interval, and the risk of heterogeneity was evaluated. Subgroup analysis of subjects with normal weight and obesity/overweight was performed.
RESULTS: A total of seven studies involving 125 participants (age 35.95 (21-64) years and BMI 25.89 (21.30-35.46) kg/m) were included. Overall, acute exercise increased FGF-21 (d = 0.18; 95% CI 0.01 to 0.35, p = 0.02) and this remained for 1 h post-exercise FGF-21 (d = 0.59; 95% CI 0.33 to 0.86, p = 0.001). Three hours after exercise, FGF-21 was restored to near baseline values (d = - 0.05; 95% CI - 0.34 to 0.22, p = 0.68). Acute exercise raised FGF-21 concentrations in normal weight participants (d = 0.57, p = 0.001) and tended to increase in overweight and obese participants (d = 0.79, p = 0.05) 1 h post-exercise.
CONCLUSION: Acute exercise increases circulating FGF-21, irrespective of body weight.

Keywords

References

  1. Cuevas-Ramos D, Aguilar-Salinas CA (2016) Modulation of energy balance by fibroblast growth factor 21. Horm Mol Biol Clin Invest 30(1)
  2. Huang Z, Xu A, Cheung BM (2017) The potential role of fibroblast growth factor 21 in lipid metabolism and hypertension. Curr Hypertens Rep 19(4):28 [PMID: 28337713]
  3. BonDurant LD, Ameka M, Naber MC, Markan KR, Idiga SO, Acevedo MR, Walsh SA, Ornitz DM, Potthoff MJ (2017) FGF21 regulates metabolism through adipose-dependent and-independent mechanisms. Cell Metab 25(4):935–944. e934 [PMID: 28380381]
  4. Cuevas-Ramos D, Almeda-Valdes P, Aguilar-Salinas CA, Cuevas-Ramos G, Cuevas-Sosa AA, Gomez-Perez FJ (2009) The role of fibroblast growth factor 21 (FGF21) on energy balance, glucose and lipid metabolism. Curr Diabetes Rev 5(4):216–220 [PMID: 19531026]
  5. Itoh N (2014) FGF21 as a hepatokine, adipokine, and myokine in metabolism and diseases. Front Endocrinol 5:107 [DOI: 10.3389/fendo.2014.00107]
  6. Singhal G, Chee MJ, Tan TG, El Ouaamari A, Adams AC, Najarian R, Kulkarni RN, Benoist C, Flier JS, Maratos-Flier E (2016) Fibroblast growth factor 21 (FGF21) protects against high fat diet induced inflammation and islet hyperplasia in pancreas. PLoS One 11(2):e0148252 [PMID: 26872145]
  7. Fisher FM, Maratos-Flier E (2016) Understanding the physiology of FGF21. Annu Rev Physiol 78:223–241 [PMID: 26654352]
  8. Schlein C, Talukdar S, Heine M, Fischer AW, Krott LM, Nilsson SK, Brenner MB, Heeren J, Scheja L (2016) FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab 23(3):441–453 [PMID: 26853749]
  9. Cuevas-Ramos D, Mehta R, Aguilar-Salinas CA (2019) Fibroblast growth factor 21 and browning of white adipose tissue. Front Physiol 10:37–37 [PMID: 30804796]
  10. Su X, Kong Y, Peng D (2019) Fibroblast growth factor 21 in lipid metabolism and non-alcoholic fatty liver disease. Clin Chim Acta 498:30–37 [PMID: 31419414]
  11. Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5(6):426–437 [PMID: 17550778]
  12. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5(6):415–425 [PMID: 17550777]
  13. Lee MS, Choi SE, Ha ES, An SY, Kim TH, Han SJ, Kim HJ, Kim DJ, Kang Y, Lee KW (2012) Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-kappaB. Metabolism 61(8):1142–1151 [PMID: 22398021]
  14. Oost LJ, Kustermann M, Armani A, Blaauw B, Romanello V (2019) Fibroblast growth factor 21 controls mitophagy and muscle mass. J Cachexia Sarcopenia Muscle 10(3):630–642 [PMID: 30895728]
  15. Berti L, Irmler M, Zdichavsky M, Meile T, Böhm A, Stefan N, Fritsche A, Beckers J, Königsrainer A, Häring H-U (2015) Fibroblast growth factor 21 is elevated in metabolically unhealthy obesity and affects lipid deposition, adipogenesis, and adipokine secretion of human abdominal subcutaneous adipocytes. Mol Metab 4(7):519–527 [PMID: 26137439]
  16. Chen C, Cheung BM, Tso AW, Wang Y, Law LS, Ong KL, Wat NM, Xu A, Lam KS (2011) High plasma level of fibroblast growth factor 21 is an Independent predictor of type 2 diabetes: a 5.4-year population-based prospective study in Chinese subjects. Diabetes Care 34(9):2113–2115 [PMID: 21750278]
  17. Li H, Dong K, Fang Q, Hou X, Zhou M, Bao Y, Xiang K, Xu A, Jia W (2013) High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: a 3-year prospective study in China. J Hepatol 58(3):557–563 [PMID: 23142063]
  18. Taniguchi H, Tanisawa K, Sun X, Higuchi M (2016) Acute endurance exercise lowers serum fibroblast growth factor 21 levels in Japanese men. Clin Endocrinol 85(6):861–867 [DOI: 10.1111/cen.13162]
  19. Sargeant JA, Aithal GP, Takamura T, Misu H, Takayama H, Douglas JA, Turner MC, Stensel DJ, Nimmo MA, Webb DR, Yates T, King JA (2018) The influence of adiposity and acute exercise on circulating hepatokines in normal-weight and overweight/obese men. Appl Physiol Nutr Metab 43(5):482–490 [PMID: 29220580]
  20. Slusher AL, Whitehurst M, Zoeller RF, Mock JT, Maharaj M, Huang CJ (2015) Attenuated fibroblast growth factor 21 response to acute aerobic exercise in obese individuals. Nutr Metab Cardiovasc Dis 25(9):839–845 [PMID: 26141939]
  21. Tanimura Y, Aoi W, Takanami Y, Kawai Y, Mizushima K, Naito Y, Yoshikawa T (2016) Acute exercise increases fibroblast growth factor 21 in metabolic organs and circulation. Phys Rep 4(12). https://doi.org/10.14814/phy2.12828
  22. Sabaratnam R, Pedersen AJT, Kristensen JM, Handberg A, Wojtaszewski JFP, Hojlund K (2018) Intact regulation of muscle expression and circulating levels of myokines in response to exercise in patients with type 2 diabetes. Phys Rep 6(12):e13723 [DOI: 10.14814/phy2.13723]
  23. Willis SA, Sargeant JA, Thackray AE, Yates T, Stensel DJ, Aithal GP, King JA (2019) Effect of exercise intensity on circulating hepatokine concentrations in healthy men. Appl Physiol Nutr Metab 44(10):1065–1072 [PMID: 31453723]
  24. Morville T, Sahl RE, Trammell SA, Svenningsen JS, Gillum MP, Helge JW, Clemmensen C (2018) Divergent effects of resistance and endurance exercise on plasma bile acids, FGF19, and FGF21 in humans. JCI Insight 3(15)
  25. Pedersen BK (2019) Physical exercise in chronic diseases. In: Nutrition and skeletal muscle. Elsevier, pp 197–246
  26. Pedersen BK, Saltin B (2015) Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 25:1–72 [PMID: 26606383]
  27. Romero-Gómez M, Zelber-Sagi S, Trenell M (2017) Treatment of NAFLD with diet, physical activity and exercise. J Hepatol 67(4):829–846 [PMID: 28545937]
  28. Way KL, Hackett DA, Baker MK, Johnson NA (2016) The effect of regular exercise on insulin sensitivity in type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Metab 40(4):253–271 [DOI: 10.4093/dmj.2016.40.4.253]
  29. Oh S, Han G, Kim B, Shoda J (2018) Regular exercise as a secondary practical treatment for nonalcoholic fatty liver disease. Exerc Med 2
  30. Huh JY (2018) The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 41(1):14–29 [PMID: 29177585]
  31. Takahashi H, Alves CR, Stanford KI, Middelbeek RJ, Nigro P, Ryan RE, Xue R, Sakaguchi M, Lynes MD, So K (2019) TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat Metab 1(2):291 [PMID: 31032475]
  32. García-Hermoso A, Ceballos-Ceballos R, Poblete-Aro C, Hackney A, Mota J, Ramírez-Vélez R (2017) Exercise, adipokines and pediatric obesity: a meta-analysis of randomized controlled trials. Int J Obes 41(4):475–482 [DOI: 10.1038/ijo.2016.230]
  33. Negaresh R, Motl RW, Mokhtarzade M, Dalgas U, Patel D, Shamsi MM, Majdinasab N, Ranjbar R, Zimmer P, Baker JS (2018) Effects of exercise training on cytokines and adipokines in multiple sclerosis: a systematic review. Mult Scler Relat Disord 24:91–100 [PMID: 29982111]
  34. Mika A, Macaluso F, Barone R, Di Felice V, Sledzinski T (2019) Effect of exercise on fatty acid metabolism and adipokine secretion in adipose tissue. Front Physiol 10
  35. Ennequin G, Sirvent P, Whitham M (2019) Role of exercise-induced hepatokines in metabolic disorders. Am J Physiol Endocrinol Metab 317(1):E11–E24 [PMID: 30964704]
  36. Sargeant JA (2018) Exercise and insulin sensitivity: interaction with intrahepatic triglyceride and hepatokines. Loughborough University
  37. Hoffmann C, Weigert C (2017) Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harb Perspect Med 7(11):a029793 [PMID: 28389517]
  38. Pedersen BK (2011) Exercise-induced myokines and their role in chronic diseases. Brain Behav Immun 25(5):811–816 [PMID: 21354469]
  39. Khalafi M, Mohebbi H, Symonds ME, Karimi P, Akbari A, Tabari E, Faridnia M, Moghaddami K (2020) The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients 12(4):925 [>PMCID: ]
  40. Shabkhiz F, Khalafi M, Rosenkranz S, Karimi P, Moghadami K (2020) Resistance training attenuates circulating FGF-21 and myostatin and improves insulin resistance in elderly men with and without type 2 diabetes mellitus: a randomized controlled clinical trial. Eur J Sport Sci:1–14
  41. Geng L, Liao B, Jin L, Huang Z, Triggle CR, Ding H, Zhang J, Huang Y, Lin Z, Xu A (2019) Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues. Cell Rep 26(10):2738–2752. e2734 [PMID: 30840894]
  42. Cuevas-Ramos D, Almeda-Valdés P, Meza-Arana CE, Brito-Córdova G, Gómez-Pérez FJ, Mehta R, Oseguera-Moguel J, Aguilar-Salinas CA (2012) Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One 7(5)
  43. Kruse R, Vienberg SG, Vind BF, Andersen B, Højlund K (2017) Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes. Diabetologia 60(10):2042–2051 [PMID: 28721439]
  44. Yang W, Liu L, Wei Y, Fang C, Zhou F, Chen J, Han Q, Huang M, Tan X, Liu Q (2019) Exercise ameliorates the FGF21–adiponectin axis impairment in diet-induced obese mice. Endocr Connect 8(5):596–604 [PMID: 30978696]
  45. Zhang Y, Wang D, Liu Y, Zhang Y, Liu Y, Su Z, Luo T (2017) Impacts of chronic exercise on human blood fibroblast growth factor 21 levels in normal people: a meta-analysis. Biomed Res 28(13)
  46. Porter JW, Rowles JL, Fletcher JA, Zidon TM, Winn NC, McCabe LT, Park Y-M, Perfield JW, Thyfault JP, Rector RS (2017) Anti-inflammatory effects of exercise training in adipose tissue do not require FGF21. J Endocrinol 235(2):97–109 [PMID: 28765264]
  47. Kim KH, Kim SH, Min Y-K, Yang H-M, Lee J-B, Lee M-S (2013) Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One 8(5):e63517 [PMID: 23667629]
  48. He Z, Tian Y, Valenzuela PL, Huang C, Zhao J, Hong P, He Z, Yin S, Lucia A (2018) Myokine response to high-intensity interval vs. resistance exercise: an individual approach. Front Physiol 9:1735 [PMID: 30559681]
  49. Sargeant JA, Aithal GP, Takamura T, Misu H, Takayama H, Douglas JA, Turner MC, Stensel DJ, Nimmo MA, Webb DR (2017) The influence of adiposity and acute exercise on circulating hepatokines in normal-weight and overweight/obese men. Appl Physiol Nutr Metab 43(5):482–490 [PMID: 29220580]
  50. Hansen JS, Pedersen BK, Xu G, Lehmann R, Weigert C, Plomgaard P (2016) Exercise-induced secretion of FGF21 and follistatin are blocked by pancreatic clamp and impaired in type 2 diabetes. J Clin Endocrinol Metab 101(7):2816–2825 [PMID: 27163358]
  51. He Z, Tian Y, Valenzuela PL, Huang C, Zhao J, Hong P, He Z, Yin S, Lucia A (2019) Myokine/adipokine response to “aerobic” exercise: is it just a matter of exercise load? Front Physiol 10:691 [PMID: 31191366]
  52. Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge
  53. Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions, vol 4. Wiley
  54. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed) 315(7109):629–634 [DOI: 10.1136/bmj.315.7109.629]
  55. Sterne JA, Egger M (2001) Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 54(10):1046–1055 [PMID: 11576817]
  56. Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, Lanctot KL (2016) The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PLoS One 11(9)
  57. Dinoff A, Herrmann N, Swardfager W, Lanctot KL (2017) The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur J Neurosci 46(1):1635–1646 [PMID: 28493624]
  58. Lee MS, Choi S-E, Ha ES, An S-Y, Kim TH, Han SJ, Kim HJ, Kim DJ, Kang Y, Lee K-W (2012) Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB. Metabolism 61(8):1142–1151 [PMID: 22398021]
  59. Hecht R, Li Y-S, Sun J, Belouski E, Hall M, Hager T, Yie J, Wang W, Winters D, Smith S, Spahr C, Tam L-T, Shen Z, Stanislaus S, Chinookoswong N, Lau Y, Sickmier A, Michaels ML, Boone T, Véniant MM, Xu J (2012) Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes. PLoS One 7(11):e49345 [PMID: 23209571]
  60. Zhen Eugene Y, Jin Z, Ackermann Bradley L, Thomas Melissa K, Gutierrez Jesus A (2016) Circulating FGF21 proteolytic processing mediated by fibroblast activation protein. Biochem J 5:605–614 [DOI: 10.1042/BJ20151085]
  61. Hsuchou H, Pan W, Kastin AJ (2007) The fasting polypeptide FGF21 can enter brain from blood. Peptides 28(12):2382–2386 [PMID: 17996984]
  62. Brun J, Khaled S, Raynaud E, Bouix D, Micallef J, Orsetti A (1998) The triphasic effects of exercise on blood rheology: which relevance to physiology and pathophysiology? Clin Hemorheol Microcirc 19(2):89–104 [PMID: 9849922]
  63. Gillen CM, Lee R, Mack GW, Tomaselli CM, Nishiyasu T, Nadel ER (1991) Plasma volume expansion in humans after a single intense exercise protocol. J Appl Physiol (1985) 71(5):1914–1920 [DOI: 10.1152/jappl.1991.71.5.1914]
  64. Ernst E, Daburger L, Saradeth T (1991) The kinetics of blood rheology during and after prolonged standardized exercise. Clin Hemorheol Microcirc 11(5):429–439 [DOI: 10.3233/CH-1991-11520]
  65. Bloomer RJ, Farney TM (2013) Acute plasma volume change with high-intensity sprint exercise. J Strength Cond Res 27(10):2874–2878 [PMID: 23302756]
  66. Baker JS, Brock S, Dalleck L, Goulet E, Gotshall R, Hutchison A, Knight-Maloney M, Kravitz L, Laskin J, Lim Y, Lowery L, Marks DW, Mermier C, Robergs RA, Vella C, Wagner D, Wyatt F, Zhou B, Teixeira AO, Franco OS, Moraes M, Borges, Martins C, Guerreiro L, Carlos, Rosa E, Paulitsch F, Pérez W, Antônio, Silva MV, Signori LU (2014) The importance of adjustments for changes in plasma volume in the interpretation of hematological and inflammatory responses after resistance exercise. J Exerc Physiol Online 17(4)
  67. Xu X, Yu L, Chen Z (2008) Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography. IEEE Trans Biomed Eng 55(12):2753–2758 [PMID: 19126454]
  68. Yalcin O, Erman A, Muratli S, Bor-Kucukatay M, Baskurt OK (2003) Time course of hemorheological alterations after heavy anaerobic exercise in untrained human subjects. J Appl Physiol (1985) 94(3):997–1002 [DOI: 10.1152/japplphysiol.00368.2002]
  69. Qiu S, Cai X, Sun Z, Schumann U, Zügel M, Steinacker JM (2015) Chronic exercise training and circulating irisin in adults: a meta-analysis. Sports Med 45(11):1577–1588 [PMID: 26392122]

MeSH Term

Adult
Body Weight
Exercise
Fibroblast Growth Factors
Gene Expression Regulation
Humans

Chemicals

fibroblast growth factor 21
Fibroblast Growth Factors

Word Cloud

Created with Highcharts 10.0.00=FGF-21exercisedpacuteweightpost-exercise95%1hparticipantsCIAcutecirculating21immediatelybodystudiesevaluatedeffectsconcentrationsincludednormal35001-05PURPOSE/OBJECTIVE:aimstudyquantifyfibroblastgrowthfactorchangesbasedidentifysubgroupsexhibitinglargestresponseMETHODS:PubMedWebScienceCochraneLibraryelectronicdatabasessearchedDecember2019publishedEnglishpeer-reviewedjournalsStudies3adultsRandommodelsusedanalysesdatareportedstandardizedmeandifferenceSMDconfidenceintervalriskheterogeneitySubgroupanalysissubjectsobesity/overweightperformedRESULTS:totalseveninvolving125age9521-64yearsBMI258930-3546kg/mOverallincreased180102remained593386Threehoursrestorednearbaselinevalues342268raised57tendedincreaseoverweightobese79CONCLUSION:increasesirrespectiveImpactimmediatefollowingearlyconcentrationadults:systematicreviewmeta-analysisHepatokineObesityType2diabetes

Similar Articles

Cited By