The Moran process on 2-chromatic graphs.

Kamran Kaveh, Alex McAvoy, Krishnendu Chatterjee, Martin A Nowak
Author Information
  1. Kamran Kaveh: Department of Mathematics, Dartmouth College, Hanover, New Hampshire, United States. ORCID
  2. Alex McAvoy: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, United States. ORCID
  3. Krishnendu Chatterjee: Institute of Science and Technology Austria, Klosterneuburg, Austria.
  4. Martin A Nowak: Department of Mathematics, Harvard University, Cambridge, Massachusetts, United States. ORCID

Abstract

Resources are rarely distributed uniformly within a population. Heterogeneity in the concentration of a drug, the quality of breeding sites, or wealth can all affect evolutionary dynamics. In this study, we represent a collection of properties affecting the fitness at a given location using a color. A green node is rich in resources while a red node is poorer. More colors can represent a broader spectrum of resource qualities. For a population evolving according to the birth-death Moran model, the first question we address is which structures, identified by graph connectivity and graph coloring, are evolutionarily equivalent. We prove that all properly two-colored, undirected, regular graphs are evolutionarily equivalent (where "properly colored" means that no two neighbors have the same color). We then compare the effects of background heterogeneity on properly two-colored graphs to those with alternative schemes in which the colors are permuted. Finally, we discuss dynamic coloring as a model for spatiotemporal resource fluctuations, and we illustrate that random dynamic colorings often diminish the effects of background heterogeneity relative to a proper two-coloring.

References

  1. J R Soc Interface. 2017 Oct;14(135): [PMID: 28978749]
  2. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11514-9 [PMID: 9751697]
  3. Science. 2016 Sep 9;353(6304):1147-51 [PMID: 27609891]
  4. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):010103 [PMID: 20866551]
  5. PLoS Comput Biol. 2020 Jan 17;16(1):e1007494 [PMID: 31951609]
  6. Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):E2874-83 [PMID: 26038564]
  7. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16103-8 [PMID: 24046372]
  8. J Theor Biol. 2014 Nov 7;360:117-128 [PMID: 25016047]
  9. Sci Rep. 2018 Mar 6;8(1):4068 [PMID: 29511246]
  10. AIDS Rev. 2003 Jan-Mar;5(1):3-18 [PMID: 12875103]
  11. R Soc Open Sci. 2019 Jan 16;6(1):181661 [PMID: 30800394]
  12. Theor Popul Biol. 2007 Dec;72(4):560-75 [PMID: 17915273]
  13. J R Soc Interface. 2019 Aug 30;16(157):20180781 [PMID: 31409235]
  14. Commun Biol. 2019 Apr 23;2:138 [PMID: 31044163]
  15. PLoS Comput Biol. 2015 Nov 06;11(11):e1004437 [PMID: 26544962]
  16. PLoS Genet. 2014 Sep 25;10(9):e1004556 [PMID: 25255314]
  17. Sci Rep. 2017 Jul 12;7(1):5193 [PMID: 28701726]
  18. Nature. 2015 Sep 10;525(7568):261-4 [PMID: 26308893]
  19. J Theor Biol. 2014 Feb 21;343:178-85 [PMID: 24211522]
  20. Phys Rev Lett. 2012 Aug 24;109(8):088101 [PMID: 23002776]
  21. Nature. 2017 Apr 13;544(7649):227-230 [PMID: 28355181]
  22. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10775-80 [PMID: 22711808]
  23. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  24. J Antimicrob Chemother. 2010 Sep;65(9):1955-8 [PMID: 20615927]
  25. Biophys J. 2003 Aug;85(2):744-54 [PMID: 12885625]
  26. J Theor Biol. 2014 May 21;349:66-73 [PMID: 24462897]
  27. Commun Biol. 2018 Jun 14;1:71 [PMID: 30271952]
  28. PLoS Comput Biol. 2018 Nov 12;14(11):e1006559 [PMID: 30419017]
  29. PLoS Comput Biol. 2017 Nov 27;13(11):e1005864 [PMID: 29176825]
  30. PLoS Comput Biol. 2015 Mar 19;11(3):e1004142 [PMID: 25789469]
  31. PLoS Comput Biol. 2020 Jan 17;16(1):e1007529 [PMID: 31951612]
  32. Nat Hum Behav. 2020 Aug;4(8):819-831 [PMID: 32451481]
  33. PLoS One. 2015 Oct 28;10(10):e0140234 [PMID: 26509572]

MeSH Term

Animals
Biological Evolution
Color
Computational Biology
Computer Graphics
Computer Simulation
Genetic Fitness
Genetics, Population
Humans
Mathematical Concepts
Models, Biological
Mutation
Population Dynamics
Probability
Spatio-Temporal Analysis

Word Cloud

Created with Highcharts 10.0.0graphspopulationcanrepresentcolornodecolorsresourceMoranmodelgraphcoloringevolutionarilyequivalentproperlytwo-coloredeffectsbackgroundheterogeneitydynamicResourcesrarelydistributeduniformlywithinHeterogeneityconcentrationdrugqualitybreedingsiteswealthaffectevolutionarydynamicsstudycollectionpropertiesaffectingfitnessgivenlocationusinggreenrichresourcesredpoorerbroaderspectrumqualitiesevolvingaccordingbirth-deathfirstquestionaddressstructuresidentifiedconnectivityproveundirectedregular"properlycolored"meanstwoneighborscomparealternativeschemespermutedFinallydiscussspatiotemporalfluctuationsillustraterandomcoloringsoftendiminishrelativepropertwo-coloringprocess2-chromatic

Similar Articles

Cited By