Simulation of Large Scale Neural Models With Event-Driven Connectivity Generation.

Nathalie Azevedo Carvalho, Sylvain Contassot-Vivier, Laure Buhry, Dominique Martinez
Author Information
  1. Nathalie Azevedo Carvalho: Université de Lorraine, CNRS, Inria, LORIA, Nancy, France.
  2. Sylvain Contassot-Vivier: Université de Lorraine, CNRS, LORIA, Nancy, France.
  3. Laure Buhry: Université de Lorraine, CNRS, Inria, LORIA, Nancy, France.
  4. Dominique Martinez: Université de Lorraine, CNRS, LORIA, Nancy, France.

Abstract

Accurate simulations of brain structures is a major problem in neuroscience. Many works are dedicated to design better models or to develop more efficient simulation schemes. In this paper, we propose a hybrid simulation scheme that combines time-stepping second-order integration of Hodgkin-Huxley (HH) type neurons with event-driven updating of the synaptic currents. As the HH model is a continuous model, there is no explicit spike events. Thus, in order to preserve the accuracy of the integration method, a spike detection algorithm is developed that accurately determines spike times. This approach allows us to regenerate the outgoing connections at each event, thereby avoiding the storage of the connectivity. Consequently, memory consumption is significantly reduced while preserving execution time and accuracy of the simulations, especially the spike times of detailed point neuron models. The efficiency of the method, implemented in the software, is demonstrated by the simulation of a striatum model which consists of more than 10 neurons and 10 synapses (each neuron has a fan-out of 504 post-synaptic neurons), under normal and Parkinson's conditions.

Keywords

References

  1. Neural Comput. 2000 Oct;12(10):2305-29 [PMID: 11032036]
  2. J Theor Biol. 1974 May;45(1):249-73 [PMID: 4836889]
  3. Neural Comput. 1998 Feb 15;10(2):467-83 [PMID: 9472491]
  4. J Neurosci. 2016 May 18;36(20):5556-71 [PMID: 27194335]
  5. Front Neuroinform. 2014 Oct 10;8:78 [PMID: 25346682]
  6. eNeuro. 2017 Jan 12;3(6): [PMID: 28101525]
  7. Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11620-5 [PMID: 21697509]
  8. Neural Comput. 2007 Dec;19(12):3226-38 [PMID: 17970651]
  9. J Comput Neurosci. 2006 Oct;21(2):119-29 [PMID: 16732488]
  10. Front Neuroinform. 2018 Jul 04;12:34 [PMID: 30008668]
  11. Neural Comput. 2006 Dec;18(12):2959-93 [PMID: 17052155]
  12. Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7337-44 [PMID: 27382147]
  13. Neuron. 2019 May 22;102(4):735-744 [PMID: 31121126]
  14. Nat Comput Sci. 2021 Feb;1(2):136-142 [PMID: 38217218]
  15. J Neurosci. 2008 May 21;28(21):5504-12 [PMID: 18495884]
  16. Neural Comput. 2007 Jan;19(1):47-79 [PMID: 17134317]
  17. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3593-8 [PMID: 18292226]
  18. Brain Res. 1999 Jun 26;833(1):58-70 [PMID: 10375677]
  19. Neural Comput. 2007 Oct;19(10):2604-9 [PMID: 17716004]
  20. Neural Comput. 2008 Nov;20(11):2745-56 [PMID: 18533821]
  21. Front Neurosci. 2018 Nov 20;12:816 [PMID: 30524220]
  22. Philos Trans R Soc Lond B Biol Sci. 1971 Sep 30;262(845):383-401 [PMID: 4107495]
  23. J Comput Neurosci. 2001 Sep-Oct;11(2):111-9 [PMID: 11717528]
  24. Curr Opin Neurobiol. 2014 Apr;25:1-6 [PMID: 24709593]
  25. Nat Rev Neurosci. 2006 Feb;7(2):153-60 [PMID: 16429124]
  26. Front Neuroinform. 2008 Nov 18;2:5 [PMID: 19115011]
  27. Front Neuroinform. 2012 Jan 24;5:35 [PMID: 22291636]
  28. Neural Comput. 2006 Aug;18(8):2004-27 [PMID: 16771661]
  29. J Comp Neurol. 1996 Mar 18;366(4):580-99 [PMID: 8833111]

Word Cloud

Created with Highcharts 10.0.0simulationneuronsspikemethodmodelsimulationsbrainmodelstime-steppingintegrationHodgkin-HuxleyHHevent-drivenaccuracytimesconnectivityneuron10Parkinson'sAccuratestructuresmajorproblemneuroscienceManyworksdedicateddesignbetterdevelopefficientschemespaperproposehybridschemecombinessecond-ordertypeupdatingsynapticcurrentscontinuousexpliciteventsThusorderpreservedetectionalgorithmdevelopedaccuratelydeterminesapproachallowsusregenerateoutgoingconnectionseventtherebyavoidingstorageConsequentlymemoryconsumptionsignificantlyreducedpreservingexecutiontimeespeciallydetailedpointefficiencyimplementedsoftwaredemonstratedstriatumconsistssynapsesfan-out504post-synapticnormalconditionsSimulationLargeScaleNeuralModelsEvent-DrivenConnectivityGenerationdiseaseRunge-Kuttagenerationlargescalenetworks

Similar Articles

Cited By