A combined experimental and computational approach reveals how aromatic peptide amphiphiles self-assemble to form ion-conducting nanohelices.

Yin Wang, Yaxin An, Yulia Shmidov, Ronit Bitton, Sanket A Deshmukh, John B Matson
Author Information
  1. Yin Wang: Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
  2. Yaxin An: Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States.
  3. Yulia Shmidov: Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
  4. Ronit Bitton: Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
  5. Sanket A Deshmukh: Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States.
  6. John B Matson: Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.

Abstract

Reported here is a combined experimental-computational strategy to determine structure-property-function relationships in persistent nanohelices formed by a set of aromatic peptide amphiphile (APA) tetramers with the general structure , where K= -aroylthiooxime modified lysine, X = glutamic acid or citrulline, and E = glutamic acid. In low phosphate buffer concentrations, the APAs self-assembled into flat nanoribbons, but in high phosphate buffer concentrations they formed nanohelices with regular twisting pitches ranging from 9-31 nm. Coarse-grained molecular dynamics simulations mimicking low and high salt concentrations matched experimental observations, and analysis of simulations revealed that increasing strength of hydrophobic interactions under high salt conditions compared with low salt conditions drove intramolecular collapse of the APAs, leading to nanohelix formation. Analysis of the radial distribution functions in the final self-assembled structures led to several insights. For example, comparing distances between water beads and beads representing hydrolysable K units in the APAs indicated that the K units in the nanohelices should undergo hydrolysis faster than those in the nanoribbons; experimental results verified this hypothesis. Simulation results also suggested that these nanohelices might display high ionic conductivity due to closer packing of carboxylate beads in the nanohelices than in the nanoribbons. Experimental results showed no conductivity increase over baseline buffer values for unassembled APAs, a slight increase (0.4 × 10 μS/cm) for self-assembled APAs under low salt conditions in their nanoribbon form, and a dramatic increase (8.6 × 10 μS/cm) under high salt conditions in their nanohelix form. Remarkably, under the same salt conditions, these self-assembled nanohelices conducted ions 5-10-fold more efficiently than several charged polymers, including alginate and DNA. These results highlight how experiments and simulations can be combined to provide insight into how molecular design affects self-assembly pathways; additionally, this work highlights how this approach can lead to discovery of unexpected properties of self-assembled nanostructures.

References

  1. Org Biomol Chem. 2018 Apr 4;16(14):2499-2507 [PMID: 29565077]
  2. Nat Commun. 2016 Aug 24;7:12367 [PMID: 27554944]
  3. J Phys Chem B. 2010 Jun 17;114(23):8002-8 [PMID: 20496898]
  4. J Am Chem Soc. 2003 May 28;125(21):6391-3 [PMID: 12785778]
  5. J Am Chem Soc. 2011 Mar 2;133(8):2511-7 [PMID: 21244023]
  6. Adv Drug Deliv Rev. 2017 Feb;110-111:112-126 [PMID: 27370248]
  7. Science. 2009 Aug 21;325(5943):960-3 [PMID: 19696342]
  8. Org Lett. 2014 Mar 21;16(6):1558-61 [PMID: 24575729]
  9. Science. 2012 Feb 17;335(6070):813-7 [PMID: 22344437]
  10. Chem Soc Rev. 2018 May 21;47(10):3470-3489 [PMID: 29688238]
  11. Chem Commun (Camb). 2015 Aug 25;51(66):13131-4 [PMID: 26189449]
  12. Phys Rev Lett. 2011 Jun 10;106(23):238105 [PMID: 21770548]
  13. ACS Nano. 2019 Feb 26;13(2):1900-1909 [PMID: 30673202]
  14. J Am Chem Soc. 2010 Jul 7;132(26):8819-21 [PMID: 20552966]
  15. Acc Chem Res. 2017 Oct 17;50(10):2440-2448 [PMID: 28876055]
  16. Chem Soc Rev. 2014 Dec 7;43(23):8150-77 [PMID: 25199102]
  17. J Am Chem Soc. 2020 May 20;142(20):9158-9162 [PMID: 32392041]
  18. Acta Biomater. 2019 Oct 1;97:374-384 [PMID: 31352106]
  19. Org Biomol Chem. 2016 Apr 26;14(17):4089-102 [PMID: 27064926]
  20. Nat Mater. 2015 Sep;14(9):912-7 [PMID: 26053763]
  21. Soft Matter. 2007 Dec 11;4(1):90-93 [PMID: 32907088]
  22. J Phys Chem B. 2009 Jul 16;113(28):9472-8 [PMID: 19548651]
  23. ACS Nano. 2018 Dec 26;12(12):12305-12314 [PMID: 30452865]
  24. J Org Chem. 2018 Nov 2;83(21):13363-13369 [PMID: 30347157]
  25. J Am Chem Soc. 2018 Nov 7;140(44):14945-14951 [PMID: 30369241]
  26. Biochemistry. 1998 May 19;37(20):7539-50 [PMID: 9585569]
  27. Biomacromolecules. 2019 Feb 11;20(2):1077-1086 [PMID: 30676716]
  28. J Phys Chem B. 2014 Oct 2;118(39):11537-45 [PMID: 25196562]
  29. Angew Chem Int Ed Engl. 2011 Jun 6;50(24):5495-8 [PMID: 21538748]
  30. Chem Rev. 2015 May 13;115(9):3518-63 [PMID: 25789869]
  31. Adv Drug Deliv Rev. 2017 Feb;110-111:127-136 [PMID: 28257999]
  32. Nano Lett. 2012 Sep 12;12(9):4907-13 [PMID: 22924639]
  33. Biomacromolecules. 2020 Mar 9;21(3):1171-1178 [PMID: 32053359]
  34. Chem Rev. 2009 Nov;109(11):5687-754 [PMID: 19769364]
  35. Acc Chem Res. 2017 Apr 18;50(4):714-722 [PMID: 28191928]
  36. J Am Chem Soc. 2006 Nov 8;128(44):14337-40 [PMID: 17076506]
  37. ACS Appl Bio Mater. 2019 Nov 18;2(11):5093-5098 [PMID: 33283175]
  38. J Am Chem Soc. 2005 May 25;127(20):7337-45 [PMID: 15898782]
  39. Angew Chem Int Ed Engl. 2018 Apr 23;57(18):5029-5032 [PMID: 29498169]
  40. Langmuir. 2011 Jun 7;27(11):6628-38 [PMID: 21524093]
  41. J Am Chem Soc. 2011 Mar 16;133(10):3677-83 [PMID: 21341770]
  42. Nature. 2003 Apr 17;422(6933):753-8 [PMID: 12700769]
  43. J Phys Chem B. 2019 Nov 21;123(46):9882-9888 [PMID: 31682119]
  44. J Phys Chem B. 2007 Jul 12;111(27):7812-24 [PMID: 17569554]
  45. J Am Chem Soc. 2014 Sep 3;136(35):12461-8 [PMID: 25144245]
  46. Angew Chem Int Ed Engl. 2016 Aug 16;55(34):9988-92 [PMID: 27392288]

Grants

  1. R01 GM123508/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0nanohelicessaltAPAsself-assembledhighconditionslowresultscombinedbufferconcentrationsnanoribbonssimulationsexperimentalbeadsincreaseformformedaromaticpeptide=glutamicacidphosphatemolecularnanohelixseveralKunitsconductivity×10μS/cmcanapproachReportedexperimental-computationalstrategydeterminestructure-property-functionrelationshipspersistentsetamphiphileAPAtetramersgeneralstructureK=-aroylthiooximemodifiedlysineXcitrullineEflatregulartwistingpitchesranging9-31nmCoarse-graineddynamicsmimickingmatchedobservationsanalysisrevealedincreasingstrengthhydrophobicinteractionscompareddroveintramolecularcollapseleadingformationAnalysisradialdistributionfunctionsfinalstructuresledinsightsexamplecomparingdistanceswaterrepresentinghydrolysableindicatedundergohydrolysisfasterverifiedhypothesisSimulationalsosuggestedmightdisplayionicduecloserpackingcarboxylateExperimentalshowedbaselinevaluesunassembledslight04nanoribbondramatic86Remarkablyconductedions5-10-foldefficientlychargedpolymersincludingalginateDNAhighlightexperimentsprovideinsightdesignaffectsself-assemblypathwaysadditionallyworkhighlightsleaddiscoveryunexpectedpropertiesnanostructurescomputationalrevealsamphiphilesself-assembleion-conducting

Similar Articles

Cited By