Kisspeptin-1 regulates forebrain dopaminergic neurons in the zebrafish.

Nurul M Abdul Satar, Satoshi Ogawa, Ishwar S Parhar
Author Information
  1. Nurul M Abdul Satar: Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
  2. Satoshi Ogawa: Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia. satoshi.ogawa@monash.edu.
  3. Ishwar S Parhar: Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.

Abstract

The habenula is a phylogenetically conserved epithalamic structure, which conveys negative information via inhibition of mesolimbic dopamine neurons. We have previously shown the expression of kisspeptin (Kiss1) in the habenula and its role in the modulation of fear responses in the zebrafish. In this study, to investigate whether habenular Kiss1 regulates fear responses via dopamine neurons in the zebrafish, Kiss1 peptides were intracranially administered close to the habenula, and the expression of dopamine-related genes (th1, th2 and dat) were examined in the brain using real-time PCR and dopamine levels using LC-MS/MS. th1 mRNA levels and dopamine levels were significantly increased in the telencephalon 24-h and 30-min after Kiss1 administration, respectively. In fish administered with Kiss1, expression of neural activity marker gene, npas4a and kiss1 gene were significantly decreased in the ventral habenula. Application of neural tracer into the median raphe, site of habenular Kiss1 neural terminal projections showed tracer-labelled projections in the medial forebrain bundle towards the telencephalon where dopamine neurons reside. These results suggest that Kiss1 negatively regulates its own neuronal activity in the ventral habenula via autocrine action. This, in turn affects neurons of the median raphe via interneurons, which project to the telencephalic dopaminergic neurons.

References

  1. Physiol Behav. 1998 Jun 1;64(3):227-34 [PMID: 9748087]
  2. J Neurosci. 2010 Jan 27;30(4):1566-74 [PMID: 20107084]
  3. Neuropsychopharmacology. 2015 Nov;40(12):2843-51 [PMID: 25971591]
  4. J Neurosci. 1986 Mar;6(3):613-9 [PMID: 3958786]
  5. Neuroscience. 2006 Dec;143(3):661-70 [PMID: 17027163]
  6. J Chem Neuroanat. 2016 Nov;77:176-186 [PMID: 27427471]
  7. PLoS One. 2011;6(11):e27395 [PMID: 22076157]
  8. Endocrinology. 2010 Jul;151(7):3247-57 [PMID: 20410200]
  9. Dev Dyn. 2011 Nov;240(11):2539-47 [PMID: 21932324]
  10. PLoS One. 2012;7(8):e42482 [PMID: 22879998]
  11. Neuron. 2005 Jun 2;46(5):703-13 [PMID: 15924857]
  12. Behav Res Methods. 2009 Nov;41(4):1149-60 [PMID: 19897823]
  13. J Neurosci. 2015 Feb 11;35(6):2572-87 [PMID: 25673850]
  14. J Comp Neurol. 1978 Jun 1;179(3):641-67 [PMID: 565370]
  15. Mol Cell Endocrinol. 2010 Jan 27;314(2):164-9 [PMID: 19464345]
  16. Behav Brain Res. 2013 Apr 15;243:300-5 [PMID: 23348107]
  17. Neurosci Res. 2012 Sep;74(1):10-6 [PMID: 22691459]
  18. J Histochem Cytochem. 1975 Jan;23(1):1-12 [PMID: 234988]
  19. Curr Biol. 2010 Dec 21;20(24):2211-6 [PMID: 21145744]
  20. Endocrinology. 2009 Feb;150(2):821-31 [PMID: 18927220]
  21. Endocrinology. 2012 May;153(5):2398-407 [PMID: 22454151]
  22. Front Neurosci. 2011 Dec 21;5:138 [PMID: 22203792]
  23. J Am Assoc Lab Anim Sci. 2019 Nov 1;58(6):823-828 [PMID: 31662156]
  24. Neurobiol Dis. 2010 Oct;40(1):46-57 [PMID: 20472064]
  25. Neurobiol Learn Mem. 2015 Sep;123:187-95 [PMID: 26103138]
  26. Eur J Neurosci. 2009 Oct;30(7):1239-50 [PMID: 19788571]
  27. Neuropsychopharmacology. 2013 Nov;38(12):2418-26 [PMID: 23736315]
  28. J Neurosci. 2007 Jun 27;27(26):6923-30 [PMID: 17596440]
  29. Nature. 2007 Jun 28;447(7148):1111-5 [PMID: 17522629]
  30. Front Behav Neurosci. 2014 May 13;8:170 [PMID: 24860453]
  31. Neurol Res. 2016 Jul;38(7):561-9 [PMID: 27098542]
  32. eNeuro. 2017 May 19;4(3): [PMID: 28534042]
  33. J Biol Chem. 2013 Aug 2;288(31):22451-9 [PMID: 23754283]
  34. Front Behav Neurosci. 2016 Feb 16;10:16 [PMID: 26909029]
  35. FASEB J. 2012 Jul;26(7):2941-50 [PMID: 22499582]
  36. Anat Sci Int. 2013 Jan;88(1):1-9 [PMID: 23086722]
  37. J Comp Neurol. 2016 Oct 1;524(14):2753-75 [PMID: 26917324]
  38. Front Neural Circuits. 2013 Apr 08;7:63 [PMID: 23580329]
  39. Science. 2009 Aug 21;325(5943):1017-20 [PMID: 19696353]
  40. Trends Neurosci. 2016 Apr;39(4):264-275 [PMID: 26987258]
  41. Cell. 2014 May 22;157(5):1216-29 [PMID: 24855953]
  42. J Neurosci. 2016 Jan 13;36(2):302-11 [PMID: 26758824]
  43. FEBS Lett. 1999 Mar 5;446(1):103-7 [PMID: 10100623]
  44. Anal Chim Acta. 2016 Jun 7;923:55-65 [PMID: 27155302]
  45. J Neuroendocrinol. 2015 Feb;27(2):88-99 [PMID: 25453900]
  46. Front Endocrinol (Lausanne). 2018 May 07;9:222 [PMID: 29867758]
  47. J Comp Neurol. 2013 Mar 1;521(4):933-48 [PMID: 22886357]
  48. Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3841-6 [PMID: 24567386]
  49. Neurosci Lett. 1989 Oct 23;105(1-2):57-62 [PMID: 2485886]
  50. Science. 2004 Mar 26;303(5666):2040-2 [PMID: 15044807]
  51. Stress. 2005 Jun;8(2):117-31 [PMID: 16019603]
  52. Behav Res Methods. 2007 May;39(2):175-91 [PMID: 17695343]
  53. J Neurochem. 2015 Nov;135(4):814-29 [PMID: 26250886]
  54. Front Neuroanat. 2014 Dec 04;8:148 [PMID: 25538572]
  55. Neuropharmacology. 2011 Feb-Mar;60(2-3):381-7 [PMID: 20955718]
  56. Science. 2016 Apr 1;352(6281):87-90 [PMID: 27034372]
  57. J Neurochem. 2015 Jun;133(6):870-8 [PMID: 25818845]
  58. Nat Neurosci. 2010 Nov;13(11):1354-6 [PMID: 20935642]
  59. J Neuroendocrinol. 2015 Mar;27(3):198-211 [PMID: 25529211]
  60. Neuroendocrinology. 2002 Mar;75(3):201-8 [PMID: 11914592]
  61. J Comp Neurol. 2009 Jan 10;512(2):158-82 [PMID: 19003874]
  62. Histochem Cell Biol. 2014 Dec;142(6):619-33 [PMID: 25028341]
  63. Pharmacol Biochem Behav. 2017 Jun;157:1-8 [PMID: 28408289]
  64. Prog Brain Res. 2000;126:133-63 [PMID: 11105645]
  65. Nature. 2008 Oct 30;455(7217):1198-204 [PMID: 18815592]
  66. Elife. 2017 May 31;6: [PMID: 28561735]
  67. Neuron. 2014 Dec 3;84(5):1034-48 [PMID: 25467985]
  68. Behav Brain Res. 2016 Apr 15;303:109-19 [PMID: 26801827]

MeSH Term

Animals
Behavior, Animal
Chromatography, Liquid
Dopamine
Dopaminergic Neurons
Gene Expression Regulation
Habenula
Interneurons
Kisspeptins
Male
Neurons
Prosencephalon
RNA, Messenger
Raphe Nuclei
Real-Time Polymerase Chain Reaction
Social Behavior
Tandem Mass Spectrometry
Telencephalon
Zebrafish
Zebrafish Proteins

Chemicals

Kiss1 protein, zebrafish
Kisspeptins
RNA, Messenger
Zebrafish Proteins
Dopamine

Word Cloud

Created with Highcharts 10.0.0Kiss1neuronshabenuladopamineviaexpressionzebrafishregulateslevelsneuralfearresponseshabenularadministeredth1usingsignificantlytelencephalonactivitygeneventralmedianrapheprojectionsforebraindopaminergicphylogeneticallyconservedepithalamicstructureconveysnegativeinformationinhibitionmesolimbicpreviouslyshownkisspeptinrolemodulationstudyinvestigatewhetherpeptidesintracraniallyclosedopamine-relatedgenesth2datexaminedbrainreal-timePCRLC-MS/MSmRNAincreased24-h30-minadministrationrespectivelyfishmarkernpas4akiss1decreasedApplicationtracersiteterminalshowedtracer-labelledmedialbundletowardsresideresultssuggestnegativelyneuronalautocrineactionturnaffectsinterneuronsprojecttelencephalicKisspeptin-1

Similar Articles

Cited By