Mechanisms of Ras Membrane Organization and Signaling: Ras Rocks Again.

Daniel Abankwa, Alemayehu A Gorfe
Author Information
  1. Daniel Abankwa: Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg. ORCID
  2. Alemayehu A Gorfe: Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA. ORCID

Abstract

Ras is the most frequently mutated oncogene and recent drug development efforts have spurred significant new research interest. Here we review progress toward understanding how Ras functions in nanoscale, proteo-lipid signaling complexes on the plasma membrane, called nanoclusters. We discuss how G-domain reorientation is plausibly linked to Ras-nanoclustering and -dimerization. We then look at how these mechanistic features could cooperate in the engagement and activation of RAF by Ras. Moreover, we show how this structural information can be integrated with microscopy data that provide nanoscale resolution in cell biological experiments. Synthesizing the available data, we propose to distinguish between two types of Ras nanoclusters, an active, immobile RAF-dependent type and an inactive/neutral membrane anchor-dependent. We conclude that it is possible that Ras reorientation enables dynamic Ras dimerization while the whole Ras/RAF complex transits into an active state. These transient di/oligomer interfaces of Ras may be amenable to pharmacological intervention. We close by highlighting a number of open questions including whether all effectors form active nanoclusters and whether there is an isoform specific composition of Ras nanocluster.

Keywords

References

  1. Biophys J. 2016 Mar 8;110(5):1125-38 [PMID: 26958889]
  2. Elife. 2015 Aug 14;4:e08905 [PMID: 26274561]
  3. Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):7996-8001 [PMID: 26080442]
  4. Sci STKE. 2004 Sep 07;2004(250):RE13 [PMID: 15367757]
  5. Curr Opin Cell Biol. 2006 Aug;18(4):351-7 [PMID: 16781855]
  6. J Biol Chem. 2019 Feb 8;294(6):2193-2207 [PMID: 30559287]
  7. J Cell Biol. 2003 Jan 20;160(2):165-70 [PMID: 12527752]
  8. Science. 2001 Nov 9;294(5545):1299-304 [PMID: 11701921]
  9. Sci Rep. 2017 Aug 21;7(1):8944 [PMID: 28827765]
  10. Sci Signal. 2020 Mar 31;13(625): [PMID: 32234958]
  11. Annu Rev Immunol. 2006;24:771-800 [PMID: 16551266]
  12. Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3363-3364 [PMID: 32047043]
  13. Chemphyschem. 2003 Jul 14;4(7):748-53 [PMID: 12901307]
  14. Nat Rev Mol Cell Biol. 2015 May;16(5):281-98 [PMID: 25907612]
  15. J Biol Chem. 2014 Apr 4;289(14):9519-33 [PMID: 24569991]
  16. Oncogene. 2016 Oct 6;35(40):5248-5262 [PMID: 26973241]
  17. Nat Commun. 2018 Aug 9;9(1):3169 [PMID: 30093669]
  18. J Mol Biol. 2000 Aug 25;301(4):1077-87 [PMID: 10966806]
  19. Cell Chem Biol. 2018 Nov 15;25(11):1327-1336.e4 [PMID: 30122370]
  20. Cell. 2010 Apr 30;141(3):458-71 [PMID: 20416930]
  21. Biochem J. 2005 Jul 1;389(Pt 1):1-11 [PMID: 15954863]
  22. Biophys J. 2020 Mar 10;118(5):1129-1141 [PMID: 32027820]
  23. Nat Cell Biol. 2007 Aug;9(8):905-14 [PMID: 17618274]
  24. Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):460-5 [PMID: 22203965]
  25. J Phys Chem B. 2016 Aug 25;120(33):8547-56 [PMID: 27072779]
  26. Biophys J. 2010 Dec 1;99(11):L87-9 [PMID: 21112273]
  27. Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):E6766-E6775 [PMID: 27791178]
  28. Eur Biophys J. 2012 Oct;41(10):801-13 [PMID: 22851002]
  29. J Biol Chem. 2019 Apr 26;294(17):7068-7084 [PMID: 30792310]
  30. J Med Chem. 2007 Feb 22;50(4):674-84 [PMID: 17263520]
  31. J Cell Biol. 2002 Jun 10;157(6):1071-81 [PMID: 12058021]
  32. Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15823-15829 [PMID: 31332011]
  33. Sci Adv. 2019 Aug 14;5(8):eaav8463 [PMID: 31453322]
  34. Structure. 2018 Mar 6;26(3):513-525.e2 [PMID: 29429878]
  35. Mol Cell. 2019 Dec 19;76(6):872-884.e5 [PMID: 31606273]
  36. Biophys J. 2019 Jan 22;116(2):179-183 [PMID: 30616834]
  37. PLoS One. 2016 Jul 20;11(7):e0159677 [PMID: 27437940]
  38. PLoS One. 2016 Dec 9;11(12):e0167145 [PMID: 27936046]
  39. J Am Chem Soc. 2017 Sep 27;139(38):13466-13475 [PMID: 28863262]
  40. Cell. 2017 Jan 12;168(1-2):239-251.e16 [PMID: 28041850]
  41. Nat Chem Biol. 2017 Jan;13(1):62-68 [PMID: 27820802]
  42. Cell. 2011 Mar 18;144(6):897-909 [PMID: 21414482]
  43. J Phys Chem B. 2019 Oct 17;123(41):8644-8652 [PMID: 31554397]
  44. Cell Rep. 2020 Jul 21;32(3):107909 [PMID: 32697994]
  45. Nat Commun. 2021 Feb 19;12(1):1176 [PMID: 33608534]
  46. Genes Dev. 2012 Jul 1;26(13):1421-6 [PMID: 22751498]
  47. Clin Cancer Res. 2015 Apr 15;21(8):1819-27 [PMID: 25878363]
  48. J Am Chem Soc. 2016 Feb 17;138(6):1800-3 [PMID: 26812279]
  49. Science. 2008 Jan 11;319(5860):210-3 [PMID: 18187657]
  50. J Biol Chem. 2002 Oct 4;277(40):37169-75 [PMID: 12149263]
  51. Biophys J. 2019 Mar 19;116(6):1049-1063 [PMID: 30846362]
  52. Trends Cell Biol. 2015 Apr;25(4):190-7 [PMID: 25759176]
  53. J Cell Sci. 2005 May 1;118(Pt 9):1799-809 [PMID: 15860728]
  54. Trends Biochem Sci. 2011 Nov;36(11):604-15 [PMID: 21917465]
  55. Nat Rev Cancer. 2020 Jul;20(7):383-397 [PMID: 32341551]
  56. Mol Cell Biol. 2008 Jul;28(13):4377-85 [PMID: 18458061]
  57. Biochemistry. 2019 Aug 20;58(33):3537-3545 [PMID: 31339036]
  58. Methods Mol Biol. 2014;1120:307-26 [PMID: 24470034]
  59. Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17290-17297 [PMID: 31399543]
  60. Cell. 2017 Jun 29;170(1):17-33 [PMID: 28666118]
  61. Mol Cell Biol. 2014 Mar;34(5):862-76 [PMID: 24366544]
  62. Curr Biol. 2012 Jun 5;22(11):945-55 [PMID: 22560614]
  63. Nat Chem Biol. 2013 Jul;9(7):428-36 [PMID: 23685672]
  64. Angew Chem Int Ed Engl. 2020 Jun 26;59(27):11037-11045 [PMID: 32227412]
  65. Sci Rep. 2017 Jan 09;7:40109 [PMID: 28067274]
  66. Curr Opin Struct Biol. 2003 Feb;13(1):122-9 [PMID: 12581669]
  67. Nat Struct Mol Biol. 2021 Oct;28(10):847-857 [PMID: 34625747]
  68. Science. 2010 Jan 1;327(5961):46-50 [PMID: 20044567]
  69. Nat Commun. 2017 Oct 31;8(1):1211 [PMID: 29084939]
  70. Structure. 2008 Jun;16(6):885-96 [PMID: 18547521]
  71. J Am Chem Soc. 2011 Feb 2;133(4):880-7 [PMID: 21141956]
  72. PLoS Comput Biol. 2009 Mar;5(3):e1000325 [PMID: 19300489]
  73. Cell Cycle. 2008 Sep 1;7(17):2667-73 [PMID: 18758236]
  74. Cell. 2018 Feb 8;172(4):857-868.e15 [PMID: 29336889]
  75. EMBO J. 2008 Mar 5;27(5):727-35 [PMID: 18273062]
  76. Mol Cell Biol. 2018 Aug 28;38(18): [PMID: 29967243]
  77. Structure. 2015 Jul 7;23(7):1325-35 [PMID: 26051715]
  78. Sci Rep. 2016 Apr 18;6:24165 [PMID: 27087647]
  79. Small GTPases. 2017 Jul 3;8(3):129-138 [PMID: 27715448]
  80. Dis Model Mech. 2015 Aug 1;8(8):769-82 [PMID: 26203125]
  81. Proc Natl Acad Sci U S A. 2004 May 11;101(19):7317-22 [PMID: 15123831]
  82. J Cell Sci. 2007 Aug 15;120(Pt 16):2953-62 [PMID: 17690305]
  83. Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1130-5 [PMID: 20080631]
  84. J Cell Sci. 2020 Jun 24;133(12): [PMID: 32501281]
  85. Nat Cell Biol. 2011 Dec 18;14(2):148-58 [PMID: 22179043]
  86. Proc Natl Acad Sci U S A. 2012 May 22;109(21):8097-102 [PMID: 22562795]
  87. J Am Chem Soc. 2012 Oct 17;134(41):17278-85 [PMID: 22994893]
  88. Biochim Biophys Acta. 2015 Apr;1853(4):841-9 [PMID: 25234412]
  89. Proc Natl Acad Sci U S A. 2015 May 26;112(21):6625-30 [PMID: 25941399]
  90. Cancer Res. 2020 Jul 15;80(14):2969-2974 [PMID: 32209560]
  91. Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24258-24268 [PMID: 32913056]
  92. Mol Cell Biol. 2016 Sep 26;36(20):2612-25 [PMID: 27503857]
  93. Biophys J. 2018 Jan 9;114(1):137-145 [PMID: 29320680]
  94. Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18519-24 [PMID: 24158481]
  95. Sci Rep. 2018 May 31;8(1):8461 [PMID: 29855542]

Grants

  1. R01 GM124233/NIGMS NIH HHS
  2. INTER/UKRI/19/14174764-RAS-NANOME/Fonds National de la Recherche Luxembourg

MeSH Term

ras Proteins
Signal Transduction
Humans
Cell Membrane
Animals
raf Kinases
Protein Multimerization

Chemicals

ras Proteins
raf Kinases

Word Cloud

Created with Highcharts 10.0.0Rasmembranenanoclustersactivenanoscalereorientationdatadimerizationwhethernanoclusterfrequentlymutatedoncogenerecentdrugdevelopmenteffortsspurredsignificantnewresearchinterestreviewprogresstowardunderstandingfunctionsproteo-lipidsignalingcomplexesplasmacalleddiscussG-domainplausiblylinkedRas-nanoclustering-dimerizationlookmechanisticfeaturescooperateengagementactivationRAFMoreovershowstructuralinformationcanintegratedmicroscopyprovideresolutioncellbiologicalexperimentsSynthesizingavailableproposedistinguishtwotypesimmobileRAF-dependenttypeinactive/neutralanchor-dependentconcludepossibleenablesdynamicwholeRas/RAFcomplextransitsstatetransientdi/oligomerinterfacesmayamenablepharmacologicalinterventionclosehighlightingnumberopenquestionsincludingeffectorsformisoformspecificcompositionMechanismsMembraneOrganizationSignaling:RocksAgainHVRRaforientationstructure

Similar Articles

Cited By