The Small Toxic Protein TimP Targets the Cytoplasmic Membrane and Is Repressed by the Small RNA TimR.

Liis Andresen, Yolanda Martínez-Burgo, Josefin Nilsson Zangelin, Alisa Rizvanovic, Erik Holmqvist
Author Information
  1. Liis Andresen: Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
  2. Yolanda Martínez-Burgo: Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
  3. Josefin Nilsson Zangelin: Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
  4. Alisa Rizvanovic: Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden. ORCID
  5. Erik Holmqvist: Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden erik.holmqvist@icm.uu.se. ORCID

Abstract

Small proteins are gaining increased attention due to their important functions in major biological processes throughout the domains of life. However, their small size and low sequence conservation make them difficult to identify. It is therefore not surprising that enterobacterial has escaped identification as a small protein coding gene for nearly 2 decades. Since its identification in 2001, has been thought to encode a noncoding RNA and has been implicated in biofilm formation in and pathogenesis in Although a recent ribosome profiling study suggested to be translated, the corresponding protein product was not detected. In this study, we provide evidence that encodes a small toxic inner membrane protein, TimP, overexpression of which causes cytoplasmic membrane leakage. TimP carries an N-terminal signal sequence, indicating that its membrane localization is Sec-dependent. Expression of TimP is repressed by the small RNA (sRNA) TimR, which base pairs with the mRNA to inhibit its translation. In contrast to overexpression, endogenous expression of TimP upon deletion permits cell growth, possibly indicating a toxicity-independent function in the bacterial membrane. Next-generation sequencing (NGS) has enabled the revelation of a vast number of genomes from organisms spanning all domains of life. To reduce complexity when new genome sequences are annotated, open reading frames (ORFs) shorter than 50 codons in length are generally omitted. However, it has recently become evident that this procedure sorts away ORFs encoding small proteins of high biological significance. For instance, tailored small protein identification approaches have shown that bacteria encode numerous small proteins with important physiological functions. As the number of predicted small ORFs increase, it becomes important to characterize the corresponding proteins. In this study, we discovered a conserved but previously overlooked small enterobacterial protein. We show that this protein, which we dubbed TimP, is a potent toxin that inhibits bacterial growth by targeting the cell membrane. Toxicity is relieved by a small regulatory RNA, which binds the toxin mRNA to inhibit toxin synthesis.

Keywords

References

  1. Mol Microbiol. 2016 Nov;102(3):430-445 [PMID: 27447896]
  2. Nucleic Acids Res. 2011 Jul;39(13):5513-25 [PMID: 21422074]
  3. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5689-5694 [PMID: 28512220]
  4. Nucleic Acids Res. 2017 Nov 16;45(20):e168 [PMID: 28977509]
  5. Nucleic Acids Res. 2020 Sep 18;48(16):9301-9319 [PMID: 32813020]
  6. EMBO J. 1992 Jul;11(7):2675-83 [PMID: 1378398]
  7. Front Microbiol. 2019 Jun 21;10:1308 [PMID: 31293528]
  8. Science. 2017 Apr 21;356(6335):323-327 [PMID: 28386024]
  9. Curr Opin Microbiol. 2016 Apr;30:114-121 [PMID: 26874964]
  10. Nat Chem Biol. 2017 Feb;13(2):174-180 [PMID: 27918561]
  11. RNA. 2016 Nov;22(11):1739-1749 [PMID: 27651528]
  12. J Bacteriol. 2012 Oct;194(20):5576-88 [PMID: 22885295]
  13. J Bacteriol. 2010 Jan;192(1):46-58 [PMID: 19734316]
  14. J Biol Chem. 1999 Dec 31;274(53):37901-7 [PMID: 10608856]
  15. J Bacteriol. 2017 May 9;199(11): [PMID: 28289085]
  16. Trends Cell Biol. 2017 Sep;27(9):685-696 [PMID: 28528987]
  17. Microbiol Mol Biol Rev. 2008 Dec;72(4):579-89, Table of Contents [PMID: 19052321]
  18. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16696-701 [PMID: 23010927]
  19. PLoS Genet. 2013;9(2):e1003260 [PMID: 23408903]
  20. Food Microbiol. 2012 May;30(1):311-5 [PMID: 22265317]
  21. PLoS Genet. 2009 Dec;5(12):e1000788 [PMID: 20041203]
  22. Biochim Biophys Acta. 1988 Jun 9;947(2):307-33 [PMID: 3285892]
  23. Mol Microbiol. 2008 Dec;70(6):1487-501 [PMID: 19121005]
  24. Cell. 2011 Nov 11;147(4):789-802 [PMID: 22056041]
  25. J Bacteriol. 2013 Jun;195(12):2755-67 [PMID: 23564175]
  26. J Mol Biol. 1982 May 5;157(1):105-32 [PMID: 7108955]
  27. Curr Opin Microbiol. 2011 Apr;14(2):167-73 [PMID: 21342783]
  28. Nucleic Acids Res. 2017 Mar 17;45(5):e33 [PMID: 27899661]
  29. Mol Cell. 2018 Jun 7;70(5):971-982.e6 [PMID: 29804828]
  30. DNA Res. 2016 Jun;23(3):193-201 [PMID: 27013550]
  31. Genome Biol. 2011 Nov 25;12(11):R118 [PMID: 22118156]
  32. Mol Cell. 2019 Sep 5;75(5):1031-1042.e4 [PMID: 31327636]
  33. Sci Rep. 2015 Mar 20;5:9374 [PMID: 25792384]
  34. EcoSal Plus. 2020 May;9(1): [PMID: 32385980]
  35. Bioinformatics. 2010 Nov 15;26(22):2811-7 [PMID: 20847219]
  36. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  37. Nucleic Acids Res. 2017 Jul 3;45(W1):W435-W439 [PMID: 28472523]
  38. Front Cell Infect Microbiol. 2011 Oct 25;1:7 [PMID: 22919573]
  39. Mol Microbiol. 2017 Mar;103(6):1020-1033 [PMID: 27997707]
  40. Curr Biol. 2004 Dec 29;14(24):2271-6 [PMID: 15620655]
  41. mBio. 2018 Aug 14;9(4): [PMID: 30108166]
  42. mBio. 2019 Mar 5;10(2): [PMID: 30837344]
  43. Nature. 1981 May 21;291(5812):238-9 [PMID: 7015147]
  44. Nat Biotechnol. 2019 Apr;37(4):420-423 [PMID: 30778233]
  45. PLoS One. 2014 Mar 24;9(3):e92690 [PMID: 24664308]
  46. Mol Microbiol. 2020 Sep;114(3):391-408 [PMID: 32291821]
  47. EMBO J. 1994 Apr 15;13(8):1950-9 [PMID: 8168492]
  48. Nat Chem Biol. 2013 Jan;9(1):59-64 [PMID: 23160002]
  49. Toxins (Basel). 2014 Aug 04;6(8):2310-35 [PMID: 25093388]
  50. Mol Cell. 2007 May 11;26(3):381-92 [PMID: 17499044]
  51. Sci Rep. 2019 Oct 3;9(1):14256 [PMID: 31582786]
  52. G3 (Bethesda). 2017 Mar 10;7(3):983-989 [PMID: 28122954]
  53. Cell. 2019 Aug 22;178(5):1245-1259.e14 [PMID: 31402174]
  54. RNA. 2011 Apr;17(4):578-94 [PMID: 21357752]
  55. Mol Microbiol. 2008 Dec;70(5):1076-93 [PMID: 18710431]
  56. Bioinformatics. 2009 May 1;25(9):1189-91 [PMID: 19151095]
  57. J Proteomics. 2020 Feb 20;213:103604 [PMID: 31841667]
  58. Mol Microbiol. 2015 Nov;98(4):651-66 [PMID: 26234942]
  59. Mol Microbiol. 2019 Jan;111(1):131-144 [PMID: 30276893]
  60. Plasmid. 2006 Jan;55(1):1-26 [PMID: 16199086]
  61. Nucleic Acids Res. 2005 Feb 17;33(3):966-76 [PMID: 15718296]
  62. Mol Microbiol. 2007 May;64(3):738-54 [PMID: 17462020]
  63. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W429-32 [PMID: 17483518]
  64. Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15901-15906 [PMID: 31320593]
  65. Cell Host Microbe. 2013 Dec 11;14(6):683-95 [PMID: 24331466]
  66. Genes (Basel). 2017 Jan 26;8(2): [PMID: 28134784]
  67. FEBS Lett. 2012 Jul 30;586(16):2529-34 [PMID: 22728134]
  68. PLoS Genet. 2016 Mar 25;12(3):e1005959 [PMID: 27015278]
  69. Proteomics. 2018 May;18(10):e1700064 [PMID: 29645342]
  70. Mol Cell. 2018 Jun 7;70(5):768-784 [PMID: 29398446]
  71. Nucleic Acids Res. 2014 Jun;42(10):6448-62 [PMID: 24748661]
  72. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991-5 [PMID: 6326095]
  73. FEMS Microbiol Rev. 2012 Nov;36(6):1023-45 [PMID: 22250915]
  74. RNA Biol. 2012 Dec;9(12):1513-9 [PMID: 23093802]
  75. Nucleic Acids Res. 2017 Apr 20;45(7):4006-4020 [PMID: 27903909]
  76. Mol Microbiol. 2020 Nov;114(5):710-720 [PMID: 32602138]
  77. Genes Dev. 2001 Jul 1;15(13):1637-51 [PMID: 11445539]
  78. Nucleic Acids Res. 2017 May 5;45(8):4782-4795 [PMID: 28077560]
  79. J Bacteriol. 1973 Sep;115(3):717-22 [PMID: 4580564]

MeSH Term

Bacterial Proteins
Cell Membrane
Down-Regulation
Gene Expression Regulation, Bacterial
Open Reading Frames
Protein Transport
RNA, Bacterial
RNA, Untranslated
Salmonella typhimurium

Chemicals

Bacterial Proteins
RNA, Bacterial
RNA, Untranslated

Word Cloud

Created with Highcharts 10.0.0smallproteinmembraneTimPRNAproteinsSmallimportantidentificationstudygrowthORFstoxinfunctionsbiologicaldomainslifeHoweversequenceenterobacterialencodecorrespondingoverexpressionindicatingsRNATimRmRNAinhibitcellbacterialnumbergainingincreasedattentionduemajorprocessesthroughoutsizelowconservationmakedifficultidentifythereforesurprisingescapedcodinggenenearly2decadesSince2001thoughtnoncodingimplicatedbiofilmformationpathogenesisAlthoughrecentribosomeprofilingsuggestedtranslatedproductdetectedprovideevidenceencodestoxicinnercausescytoplasmicleakagecarriesN-terminalsignallocalizationSec-dependentExpressionrepressedbasepairstranslationcontrastendogenousexpressionupondeletionpermitspossiblytoxicity-independentfunctionNext-generationsequencingNGSenabledrevelationvastgenomesorganismsspanningreducecomplexitynewgenomesequencesannotatedopenreadingframesshorter50codonslengthgenerallyomittedrecentlybecomeevidentproceduresortsawayencodinghighsignificanceinstancetailoredapproachesshownbacterianumerousphysiologicalpredictedincreasebecomescharacterizediscoveredconservedpreviouslyoverlookedshowdubbedpotentinhibitstargetingToxicityrelievedregulatorybindssynthesisToxicProteinTargetsCytoplasmicMembraneRepressedTAsysteminhibitionstressposttranscriptionalcontrolryfAtoxin-antitoxin

Similar Articles

Cited By