A multi-breed GWAS for morphometric traits in four Beninese indigenous cattle breeds reveals loci associated with conformation, carcass and adaptive traits.

Sèyi Fridaïus Ulrich Vanvanhossou, Carsten Scheper, Luc Hippolyte Dossa, Tong Yin, Kerstin Brügemann, Sven König
Author Information
  1. Sèyi Fridaïus Ulrich Vanvanhossou: Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany.
  2. Carsten Scheper: Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany.
  3. Luc Hippolyte Dossa: School of Science and Technics of Animal Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin.
  4. Tong Yin: Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany.
  5. Kerstin Brügemann: Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany.
  6. Sven König: Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany. sven.koenig@agrar.uni-giessen.de.

Abstract

BACKGROUND: Specific adaptive features including disease resistance and growth abilities in harsh environments are attributed to indigenous cattle breeds of Benin, but these breeds are endangered due to crossbreeding. So far, there is a lack of systematic trait recording, being the basis for breed characterizations, and for structured breeding program designs aiming on conservation. Bridging this gap, own phenotyping for morphological traits considered measurements for height at withers (HAW), sacrum height (SH), heart girth (HG), hip width (HW), body length (BL) and ear length (EL), including 449 cattle from the four indigenous Benin breeds Lagune, Somba, Borgou and Pabli. In order to utilize recent genomic tools for breed characterizations and genetic evaluations, phenotypes for novel traits were merged with high-density SNP marker data. Multi-breed genetic parameter estimations and genome-wide association studies (GWAS) for the six morphometric traits were carried out. Continuatively, we aimed on inferring genomic regions and functional loci potentially associated with conformation, carcass and adaptive traits.
RESULTS: SNP-based heritability estimates for the morphometric traits ranged between 0.46 ± 0.14 (HG) and 0.74 ± 0.13 (HW). Phenotypic and genetic correlations ranged from 0.25 ± 0.05 (HW-BL) to 0.89 ± 0.01 (HAW-SH), and from 0.14 ± 0.10 (HW-BL) to 0.85 ± 0.02 (HAW-SH), respectively. Three genome-wide and 25 chromosome-wide significant SNP positioned on different chromosomes were detected, located in very close chromosomal distance (±25 kb) to 15 genes (or located within the genes). The genes PIK3R6 and PIK3R1 showed direct functional associations with height and body size. We inferred the potential candidate genes VEPH1, CNTNAP5, GYPC for conformation, growth and carcass traits including body weight and body fat deposition. According to their functional annotations, detected potential candidate genes were associated with stress or immune response (genes PTAFR, PBRM1, ADAMTS12) and with feed efficiency (genes MEGF11 SLC16A4, CCDC117).
CONCLUSIONS: Accurate measurements contributed to large SNP heritabilities for some morphological traits, even for a small mixed-breed sample size. Multi-breed GWAS detected different loci associated with conformation or carcass traits. The identified potential candidate genes for immune response or feed efficiency indicators reflect the evolutionary development and adaptability features of the breeds.

Keywords

References

  1. Nat Genet. 2018 Mar;50(3):362-367 [PMID: 29459679]
  2. Anim Genet. 2019 Jun;50(3):311-314 [PMID: 30983012]
  3. Am J Hum Genet. 2007 Sep;81(3):559-75 [PMID: 17701901]
  4. Anim Reprod Sci. 2014 Sep;149(1-2):59-66 [PMID: 24954585]
  5. Anim Genet. 2019 Aug;50(4):386-390 [PMID: 31179577]
  6. Animal. 2018 Jul;12(7):1333-1340 [PMID: 29343308]
  7. PLoS Genet. 2014 Mar 27;10(3):e1004198 [PMID: 24675618]
  8. J Anim Sci. 2012 May;90(5):1398-410 [PMID: 22100599]
  9. PLoS One. 2016 Oct 19;11(10):e0164390 [PMID: 27760167]
  10. Anim Genet. 2014 Dec;45(6):871-3 [PMID: 25204440]
  11. Front Genet. 2020 Feb 04;11:20 [PMID: 32117439]
  12. Am J Hum Genet. 2017 Jul 6;101(1):5-22 [PMID: 28686856]
  13. Nat Protoc. 2009;4(8):1184-91 [PMID: 19617889]
  14. Genetics. 2011 Mar;187(3):981-4 [PMID: 21212230]
  15. J Anim Sci Biotechnol. 2017 Jan 25;8:11 [PMID: 28149510]
  16. Am J Hum Genet. 2010 Jan;86(1):6-22 [PMID: 20074509]
  17. J Anim Sci. 2020 Mar 1;98(3): [PMID: 32115622]
  18. Mol Ecol. 2009 Apr;18(8):1801-13 [PMID: 19302350]
  19. J Anim Breed Genet. 2020 Sep;137(5):449-467 [PMID: 31777136]
  20. Asian-Australas J Anim Sci. 2018 Mar;31(3):327-334 [PMID: 29103288]
  21. Front Genet. 2018 Jun 19;9:220 [PMID: 29971093]
  22. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(6):588-610 [PMID: 20551596]
  23. PLoS One. 2017 Apr 20;12(4):e0175971 [PMID: 28426785]
  24. Anim Reprod Sci. 2018 Oct;197:324-334 [PMID: 30213568]
  25. Front Genet. 2018 Apr 24;9:141 [PMID: 29755506]
  26. Am J Physiol Regul Integr Comp Physiol. 2007 Feb;292(2):R997-1007 [PMID: 17008462]
  27. Front Genet. 2013 Dec 09;4:280 [PMID: 24367376]
  28. Mol Ecol. 2014 Jul;23(13):3241-57 [PMID: 24888437]
  29. Genet Sel Evol. 2015 May 08;47:42 [PMID: 25951906]
  30. J Anim Sci. 2011 Nov;89(11):3382-93 [PMID: 21680785]
  31. Meat Sci. 2014 Dec;98(4):804-14 [PMID: 25170816]
  32. PLoS One. 2018 Aug 16;13(8):e0202479 [PMID: 30114214]
  33. Am J Hum Genet. 2018 Sep 6;103(3):338-348 [PMID: 30100085]
  34. Methods Mol Biol. 2013;1019:149-69 [PMID: 23756890]
  35. J Dairy Sci. 2020 Feb;103(2):1642-1650 [PMID: 31759604]
  36. Anim Genet. 2020 Feb;51(1):141-146 [PMID: 31633203]
  37. Springerplus. 2016 Jan 22;5:63 [PMID: 26839756]
  38. BMC Genet. 2015 Oct 30;16:129 [PMID: 26518887]
  39. Mol Cell. 2009 Jan 16;33(1):1-13 [PMID: 19150423]
  40. J Anim Sci. 2014 Oct;92(10):4616-31 [PMID: 25085393]
  41. Vet Parasitol. 2016 Jul 30;225:43-52 [PMID: 27369574]
  42. J Dairy Sci. 2000 Nov;83(11):2664-71 [PMID: 11104287]
  43. BMC Genomics. 2011 Aug 11;12:408 [PMID: 21831322]
  44. Anim Genet. 2018 Oct;49(5):478-482 [PMID: 30062755]
  45. Trends Parasitol. 2016 Feb;32(2):157-168 [PMID: 26643519]
  46. Genet Sel Evol. 2015 Nov 26;47:92 [PMID: 26612660]
  47. J Dairy Sci. 2003 Nov;86(11):3685-93 [PMID: 14672199]
  48. Mol Aspects Med. 2013 Apr-Jun;34(2-3):337-49 [PMID: 23506875]
  49. Front Genet. 2018 Jul 13;9:251 [PMID: 30057590]
  50. Front Genet. 2015 Nov 24;6:333 [PMID: 26635869]
  51. Trop Anim Health Prod. 2004 Nov;36(8):801-6 [PMID: 15643815]
  52. PLoS One. 2015 Apr 13;10(4):e0122797 [PMID: 25867089]
  53. Animal. 2019 Aug;13(8):1576-1582 [PMID: 30614434]
  54. Hum Genet. 2012 May;131(5):747-56 [PMID: 22143225]
  55. Genome Biol. 2003;4(5):P3 [PMID: 12734009]
  56. BMC Genet. 2013 Sep 25;14:94 [PMID: 24066663]
  57. Trop Anim Health Prod. 2012 Mar;44(3):557-65 [PMID: 21805229]
  58. PLoS One. 2013;8(2):e56001 [PMID: 23409110]
  59. Anim Sci J. 2013 Mar;84(3):206-12 [PMID: 23480700]
  60. PLoS One. 2014 Dec 11;9(12):e114862 [PMID: 25503799]
  61. Am J Hum Genet. 2011 Jul 15;89(1):191-3; author reply 193-5 [PMID: 21763486]
  62. J Dairy Sci. 2005 Nov;88(11):4111-9 [PMID: 16230715]
  63. Am J Hum Genet. 2011 Jan 7;88(1):76-82 [PMID: 21167468]
  64. Am J Hum Genet. 2013 Jul 11;93(1):158-66 [PMID: 23810382]
  65. Genes Dis. 2015 Sep;2(3):255-260 [PMID: 29354667]
  66. Anim Genet. 2011 Dec;42(6):650-5 [PMID: 22035007]
  67. BMC Vet Res. 2015 May 09;11:105 [PMID: 25956229]
  68. J Anim Sci. 2011 Jun;89(6):1669-83 [PMID: 21357453]
  69. Bioinformatics. 2011 Nov 1;27(21):3070-1 [PMID: 21926124]
  70. J Anim Breed Genet. 2015 Dec;132(6):420-7 [PMID: 26016521]
  71. Nat Genet. 2005 Apr;37(4):413-7 [PMID: 15793588]
  72. Animal. 2018 Jul;12(7):1358-1362 [PMID: 29143708]
  73. Genomics Inform. 2018 Sep;16(3):59-64 [PMID: 30309204]
  74. Genet Sel Evol. 2015 Aug 14;47:66 [PMID: 26272623]
  75. PLoS One. 2012;7(7):e41267 [PMID: 22815983]
  76. Asian-Australas J Anim Sci. 2017 Jan;30(1):8-19 [PMID: 27221246]
  77. Anim Genet. 2016 Aug;47(4):408-27 [PMID: 27226174]
  78. BMC Genet. 2017 Feb 9;18(1):11 [PMID: 28183280]
  79. Anim Genet. 2014 Dec;45(6):771-81 [PMID: 25183526]
  80. BMC Genet. 2014 Oct 06;15:106 [PMID: 25288516]
  81. J Dairy Sci. 2016 Jul;99(7):5470-5485 [PMID: 27157577]
  82. Ticks Tick Borne Dis. 2016 Apr;7(3):487-97 [PMID: 26897394]
  83. Clin Genet. 2014 Sep;86(3):292-4 [PMID: 23980586]
  84. Animal. 2014 Feb;8(2):224-35 [PMID: 24256561]
  85. J Dairy Sci. 2019 Jun;102(6):5266-5278 [PMID: 30954253]
  86. J Anim Breed Genet. 2020 Nov;137(6):622-640 [PMID: 32672901]
  87. BMC Genet. 2010 Oct 15;11:94 [PMID: 20950446]
  88. J Dairy Sci. 2000 Apr;83(4):795-806 [PMID: 10791796]
  89. Curr Opin Genet Dev. 2018 Dec;53:113-120 [PMID: 30240950]
  90. J Anim Sci. 2000 Dec;78(12):3045-52 [PMID: 11132818]
  91. Bioinformatics. 2008 Jun 1;24(11):1403-5 [PMID: 18397895]
  92. Genet Sel Evol. 2017 Nov 7;49(1):82 [PMID: 29115939]
  93. J Anim Breed Genet. 2007 Feb;124(1):12-9 [PMID: 17302955]
  94. Eur J Pharmacol. 2006 Mar 8;533(1-3):327-40 [PMID: 16483568]
  95. Front Genet. 2019 Apr 24;10:297 [PMID: 31105735]
  96. J Anim Sci. 2011 Jun;89(6):1684-97 [PMID: 21239664]
  97. Anim Genet. 2016 Apr;47(2):154-64 [PMID: 26644080]
  98. J Anim Sci. 1993 Oct;71(10):2614-22 [PMID: 8226360]
  99. Genet Sel Evol. 2017 Apr 28;49(1):41 [PMID: 28454565]
  100. PLoS One. 2016 Apr 13;11(4):e0153425 [PMID: 27073865]
  101. J Dairy Sci. 2000 Nov;83(11):2629-39 [PMID: 11104283]
  102. Genet Sel Evol. 2019 Apr 18;51(1):15 [PMID: 30999842]
  103. J Dairy Sci. 1998 Jun;81(6):1709-13 [PMID: 9684178]
  104. Nat Genet. 2010 Jul;42(7):565-9 [PMID: 20562875]
  105. BMC Genomics. 2019 Dec 6;20(1):939 [PMID: 31810463]
  106. PLoS One. 2019 Oct 30;14(10):e0221973 [PMID: 31665138]
  107. Bioinformatics. 2005 Aug 15;21(16):3439-40 [PMID: 16082012]
  108. BMC Genomics. 2013 Dec 17;14:897 [PMID: 24341352]
  109. Annu Rev Anim Biosci. 2017 Feb 8;5:133-150 [PMID: 28199171]
  110. Genet Sel Evol. 2012 Nov 12;44:33 [PMID: 23146144]
  111. BMC Genomics. 2014 Jan 24;15:62 [PMID: 24456127]
  112. Trop Anim Health Prod. 2016 Feb;48(2):349-59 [PMID: 26590609]

MeSH Term

Animals
Cattle
Genome
Genome-Wide Association Study
Genomics
Phenotype
Polymorphism, Single Nucleotide

Word Cloud

Created with Highcharts 10.0.0traitsgenesbreeds0cattlebodygeneticGWASassociatedconformationcarcasscandidateadaptiveincludingindigenousheightSNPMulti-breedmorphometricfunctionallocidetectedpotentialfeaturesgrowthBeninbreedcharacterizationsmorphologicalmeasurementsHGHWlengthfourgenomicgenome-wideSNP-basedrangedHW-BLHAW-SHdifferentlocatedsizeannotationsimmuneresponsefeedefficiencyBACKGROUND:SpecificdiseaseresistanceabilitiesharshenvironmentsattributedendangeredduecrossbreedingfarlacksystematictraitrecordingbasisstructuredbreedingprogramdesignsaimingconservationBridginggapphenotypingconsideredwithersHAWsacrumSHheartgirthhipwidthBLearEL449LaguneSombaBorgouPabliorderutilizerecenttoolsevaluationsphenotypesnovelmergedhigh-densitymarkerdataparameterestimationsassociationstudiessixcarriedContinuativelyaimedinferringregionspotentiallyRESULTS:heritabilityestimates46 ± 01474 ± 013Phenotypiccorrelations25 ± 00589 ± 00114 ± 01085 ± 002respectivelyThree25chromosome-widesignificantpositionedchromosomesclosechromosomaldistance±25 kb15withinPIK3R6PIK3R1showeddirectassociationsinferredVEPH1CNTNAP5GYPCweightfatdepositionAccordingstressPTAFRPBRM1ADAMTS12MEGF11SLC16A4CCDC117CONCLUSIONS:Accuratecontributedlargeheritabilitiesevensmallmixed-breedsampleidentifiedindicatorsreflectevolutionarydevelopmentadaptabilitymulti-breedBenineserevealsEndangeredFunctionalMorphometricPotentialparameters

Similar Articles

Cited By