A model of COVID-19 propagation based on a gamma subordinated negative binomial branching process.

Jérôme Levesque, David W Maybury, R H A David Shaw
Author Information
  1. Jérôme Levesque: Public Services and Procurement Canada, 270 Albert Street, Ottawa, ON K1P 6N7, Canada; Public Health Agency of Canada, 130 Colonnade Road, Ottawa, ON K1A 0K9, Canada.
  2. David W Maybury: Public Services and Procurement Canada, 270 Albert Street, Ottawa, ON K1P 6N7, Canada; Public Health Agency of Canada, 130 Colonnade Road, Ottawa, ON K1A 0K9, Canada. Electronic address: David.Maybury@tpsgc-pwgsc.gc.ca.
  3. R H A David Shaw: Public Services and Procurement Canada, 270 Albert Street, Ottawa, ON K1P 6N7, Canada.

Abstract

We build a parsimonious Crump-Mode-Jagers continuous time branching process of COVID-19 propagation based on a negative binomial process subordinated by a gamma subordinator. By focusing on the stochastic nature of the process in small populations, our model provides decision making insight into mitigation strategies as an outbreak begins. Our model accommodates contact tracing and isolation, allowing for comparisons between different types of intervention. We emphasize a physical interpretation of the disease propagation throughout which affords analytical results for comparison to simulations. Our model provides a basis for decision makers to understand the likely trade-offs and consequences between alternative outbreak mitigation strategies particularly in office environments and confined work-spaces. Combining the asymptotic limit of our model with Bayesian hierarchical techniques, we provide US county level inferences for the reproduction number from cumulative case count data over July and August of this year.

Keywords

References

  1. IEEE Trans Pattern Anal Mach Intell. 2015 Feb;37(2):307-20 [PMID: 26353243]
  2. Lancet Infect Dis. 2020 Jun;20(6):669-677 [PMID: 32240634]
  3. Lancet. 2020 Mar 21;395(10228):e52 [PMID: 32171074]
  4. Biometrics. 1949 Jun;5(2):162-4 [PMID: 18151958]
  5. Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16732-16738 [PMID: 32616574]
  6. Lancet Infect Dis. 2015 Feb;15(2):204-11 [PMID: 25575618]
  7. Environ Res. 2020 Sep;188:109890 [PMID: 32846654]
  8. Lancet. 2020 Apr 18;395(10232):1230 [PMID: 32305082]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026118 [PMID: 11497662]
  10. Lancet Glob Health. 2020 Apr;8(4):e488-e496 [PMID: 32119825]
  11. Bull World Health Organ. 2021 Jan 01;99(1):19-33F [PMID: 33716331]
  12. Infect Dis Model. 2017 Mar 11;2(2):128-142 [PMID: 29928733]
  13. J Clin Med. 2020 Feb 11;9(2): [PMID: 32054124]
  14. PLoS Biol. 2015 Jan 13;13(1):e1002056 [PMID: 25585384]
  15. Biostatistics. 2003 Apr;4(2):279-95 [PMID: 12925522]
  16. Lancet Infect Dis. 2020 May;20(5):553-558 [PMID: 32171059]
  17. Lancet Infect Dis. 2020 Jul;20(7):775 [PMID: 32243813]
  18. Ann Intern Med. 2020 May 05;172(9):577-582 [PMID: 32150748]
  19. Int J Epidemiol. 2021 May 17;50(2):410-419 [PMID: 33615345]

MeSH Term

Bayes Theorem
COVID-19
Humans
Models, Biological
Pandemics
SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0modelprocesspropagationbranchingCOVID-19basednegativebinomialsubordinatedgammaprovidesdecisionmitigationstrategiesoutbreakdiseaseBayesianbuildparsimoniousCrump-Mode-Jagerscontinuoustimesubordinatorfocusingstochasticnaturesmallpopulationsmakinginsightbeginsaccommodatescontacttracingisolationallowingcomparisonsdifferenttypesinterventionemphasizephysicalinterpretationthroughoutaffordsanalyticalresultscomparisonsimulationsbasismakersunderstandlikelytrade-offsconsequencesalternativeparticularlyofficeenvironmentsconfinedwork-spacesCombiningasymptoticlimithierarchicaltechniquesprovideUScountylevelinferencesreproductionnumbercumulativecasecountdataJulyAugustyearinferenceBranchingprocessesInfection

Similar Articles

Cited By (5)