The Impacts of Domestication and Agricultural Practices on Legume Nutrient Acquisition Through Symbiosis With Rhizobia and Arbuscular Mycorrhizal Fungi.

Ailin Liu, Yee-Shan Ku, Carolina A Contador, Hon-Ming Lam
Author Information
  1. Ailin Liu: Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
  2. Yee-Shan Ku: Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
  3. Carolina A Contador: Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
  4. Hon-Ming Lam: Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.

Abstract

Legumes are unique among plants as they can obtain nitrogen through symbiosis with nitrogen-fixing rhizobia that form root nodules in the host plants. Therefore they are valuable crops for sustainable agriculture. Increasing nitrogen fixation efficiency is not only important for achieving better plant growth and yield, but it is also crucial for reducing the use of nitrogen fertilizer. Arbuscular mycorrhizal fungi (AMF) are another group of important beneficial microorganisms that form symbiotic relationships with legumes. AMF can promote host plant growth by providing mineral nutrients and improving the soil ecosystem. The trilateral legume-rhizobia-AMF symbiotic relationships also enhance plant development and tolerance against biotic and abiotic stresses. It is known that domestication and agricultural activities have led to the reduced genetic diversity of cultivated germplasms and higher sensitivity to nutrient deficiencies in crop plants, but how domestication has impacted the capability of legumes to establish beneficial associations with rhizospheric microbes (including rhizobia and fungi) is not well-studied. In this review, we will discuss the impacts of domestication and agricultural practices on the interactions between legumes and soil microbes, focusing on the effects on AMF and rhizobial symbioses and hence nutrient acquisition by host legumes. In addition, we will summarize the genes involved in legume-microbe interactions and studies that have contributed to a better understanding of legume symbiotic associations using metabolic modeling.

Keywords

References

  1. Front Plant Sci. 2019 Jul 05;10:808 [PMID: 31333686]
  2. Microbiol Mol Biol Rev. 1999 Dec;63(4):968-89, table of contents [PMID: 10585971]
  3. Nat Protoc. 2019 Mar;14(3):639-702 [PMID: 30787451]
  4. Nat Commun. 2016 Jul 22;7:12219 [PMID: 27447951]
  5. PLoS Genet. 2018 Apr 19;14(4):e1007357 [PMID: 29672509]
  6. Sci Rep. 2018 Aug 21;8(1):12504 [PMID: 30131500]
  7. J Biosci. 2014 Jun;39(3):513-7 [PMID: 24845514]
  8. Ann Bot. 2004 Aug;94(2):251-8 [PMID: 15205177]
  9. Nat Rev Microbiol. 2009 Feb;7(2):129-43 [PMID: 19116616]
  10. PLoS Comput Biol. 2012;8(10):e1002720 [PMID: 23071431]
  11. Methods Mol Biol. 2015;1284:221-35 [PMID: 25757775]
  12. PLoS One. 2012;7(2):e31287 [PMID: 22319621]
  13. PLoS Comput Biol. 2007 Oct;3(10):1887-95 [PMID: 17922569]
  14. FEMS Microbiol Ecol. 2011 Jun;76(3):439-50 [PMID: 21303397]
  15. Nat Commun. 2020 May 22;11(1):2574 [PMID: 32444627]
  16. Prog Mol Biol Transl Sci. 2017;149:187-213 [PMID: 28712497]
  17. Nat Rev Genet. 2010 Sep;11(9):636-46 [PMID: 20717154]
  18. Microbiol Mol Biol Rev. 2004 Jun;68(2):280-300 [PMID: 15187185]
  19. Plant Cell. 2005 Aug;17(8):2217-29 [PMID: 15980262]
  20. Plant Physiol. 1993 Jan;101(1):161-169 [PMID: 12231675]
  21. New Phytol. 2014 Oct;204(1):192-200 [PMID: 25041241]
  22. Evolution. 2015 Mar;69(3):631-42 [PMID: 25565449]
  23. Annu Rev Microbiol. 2008;62:93-111 [PMID: 18429691]
  24. Curr Opin Plant Biol. 2015 Jun;25:162-72 [PMID: 26057089]
  25. Plant Physiol. 2019 Aug;180(4):1912-1929 [PMID: 31171578]
  26. Front Plant Sci. 2018 Dec 18;9:1860 [PMID: 30619423]
  27. mSystems. 2020 Feb 18;5(1): [PMID: 32071157]
  28. Int J Mol Sci. 2017 Feb 04;18(2): [PMID: 28165413]
  29. Sci Rep. 2017 Apr 10;7:46264 [PMID: 28393902]
  30. Curr Biol. 2005 Mar 29;15(6):531-5 [PMID: 15797021]
  31. Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6854-6859 [PMID: 28607058]
  32. Int J Mol Sci. 2014 Oct 24;15(11):19389-93 [PMID: 25347276]
  33. PLoS One. 2015 Mar 10;10(3):e0120490 [PMID: 25756528]
  34. Sci Rep. 2017 Mar 27;7(1):448 [PMID: 28348373]
  35. Trends Plant Sci. 2014 Jun;19(6):351-60 [PMID: 24398119]
  36. Nature. 2009 Nov 26;462(7272):514-7 [PMID: 19940927]
  37. FEMS Microbiol Lett. 2013 Jun;343(1):49-56 [PMID: 23480054]
  38. BMC Genomics. 2015 Feb 25;16:132 [PMID: 25765991]
  39. Mol Plant Microbe Interact. 1999 Apr;12(4):293-318 [PMID: 10188270]
  40. J Appl Microbiol. 2019 Sep;127(3):630-647 [PMID: 30844108]
  41. Science. 2005 Jul 22;309(5734):570-4 [PMID: 16040698]
  42. Plant Cell Environ. 2016 Aug;39(8):1858-69 [PMID: 27103212]
  43. Annu Rev Genet. 1998;32:33-57 [PMID: 9928474]
  44. Saudi J Biol Sci. 2012 Apr;19(2):157-63 [PMID: 23961175]
  45. Plant Physiol. 2016 Jan;170(1):26-32 [PMID: 26582727]
  46. Plant J. 2013 Jul;75(1):130-145 [PMID: 23551619]
  47. ISME J. 2017 Oct;11(10):2244-2257 [PMID: 28585939]
  48. J Plant Growth Regul. 2000 Jun;19(2):155-166 [PMID: 11038225]
  49. Plant Mol Biol. 2016 Apr;90(6):635-44 [PMID: 26085172]
  50. Plant Physiol. 2005 Apr;137(4):1302-18 [PMID: 15749991]
  51. Mol Plant Microbe Interact. 2009 Jul;22(7):800-8 [PMID: 19522562]
  52. Heredity (Edinb). 2016 Aug;117(2):84-93 [PMID: 27118154]
  53. Plant Physiol. 2010 Aug;153(4):1808-22 [PMID: 20534735]
  54. Plant J. 2020 Aug;103(5):1937-1958 [PMID: 32410239]
  55. Microbiol Res. 2020 Feb;232:126390 [PMID: 31855689]
  56. J Am Soc Mass Spectrom. 2015 Jan;26(1):149-58 [PMID: 25323862]
  57. Front Plant Sci. 2016 Aug 31;7:1333 [PMID: 27630657]
  58. Nat Biotechnol. 2010 Mar;28(3):245-8 [PMID: 20212490]
  59. Mycorrhiza. 2011 Apr;21(3):173-81 [PMID: 20544230]
  60. PLoS Genet. 2014 Jan;10(1):e1004061 [PMID: 24391523]
  61. Adv Microb Physiol. 2012;60:325-89 [PMID: 22633062]
  62. New Phytol. 2019 Oct;224(2):818-832 [PMID: 31355948]
  63. Mol Biosyst. 2017 Feb 28;13(3):607-620 [PMID: 28244516]
  64. Plant Biotechnol J. 2009 Jun;7(5):430-41 [PMID: 19490506]
  65. Plant Cell. 2001 Jan;13(1):11-29 [PMID: 11158526]
  66. Plant Cell Physiol. 2014 Sep;55(9):1679-89 [PMID: 25059584]
  67. Plant Physiol. 2013 Jan;161(1):36-47 [PMID: 23124322]
  68. 3 Biotech. 2015 Aug;5(4):355-377 [PMID: 28324544]
  69. Plant Sci. 2012 Aug;191-192:71-81 [PMID: 22682566]
  70. Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6848-6853 [PMID: 28607056]
  71. Mol Ecol. 2004 Aug;13(8):2435-44 [PMID: 15245415]
  72. New Phytol. 2018 Apr;218(1):322-334 [PMID: 29281758]

Word Cloud

Created with Highcharts 10.0.0nitrogensymbioticlegumesdomesticationplantsrhizobiahostplantfungiAMFmetaboliccanformfixationimportantbettergrowthalsoArbuscularmycorrhizalbeneficialrelationshipssoilagriculturalnutrientassociationsmicrobeswillinteractionslegume-microbemodelingLegumesuniqueamongobtainsymbiosisnitrogen-fixingrootnodulesThereforevaluablecropssustainableagricultureIncreasingefficiencyachievingyieldcrucialreducingusefertilizeranothergroupmicroorganismspromoteprovidingmineralnutrientsimprovingecosystemtrilaterallegume-rhizobia-AMFenhancedevelopmenttolerancebioticabioticstressesknownactivitiesledreducedgeneticdiversitycultivatedgermplasmshighersensitivitydeficienciescropimpactedcapabilityestablishrhizosphericincludingwell-studiedreviewdiscussimpactspracticesfocusingeffectsrhizobialsymbioseshenceacquisitionadditionsummarizegenesinvolvedstudiescontributedunderstandinglegumeusingImpactsDomesticationAgriculturalPracticesLegumeNutrientAcquisitionSymbiosisRhizobiaMycorrhizalFungiarbuscularinteractionprofiling

Similar Articles

Cited By (15)