CardIAc: an open-source application for myocardial strain analysis.

Ariel Hernán Curiale, Agustín Bernardo, Rodrigo Cárdenas, German Mato
Author Information
  1. Ariel Hernán Curiale: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. ariel.curiale@cab.cnea.gov.ar. ORCID
  2. Agustín Bernardo: Departamento de Física Médica, Centro Atómico Bariloche e Instituto Balseiro, Av. Bustillo 9500, R8402AGP, San Carlos de Bariloche, Río Negro, Argentina.
  3. Rodrigo Cárdenas: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
  4. German Mato: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.

Abstract

PURPOSE: This paper presents CardIAc, an open-source application designed as an alternative to commercial software for left ventricle myocardial strain quantification in short-axis cardiac magnetic resonance images. The aim is to provide a useful extension for myocardial strain analysis that can be easily adapted to incorporate different strategies of motion tracking to improve the strain accuracy. In this way, users with programming skills can easily modify the code and adjust the program's performance according to their own scientific or clinical requirements. The software is intended for research and clinical use is not advised.
METHODS: CardIAc was developed as a 3D Slicer extension for an easy installation and usability. The main contribution of this article is to provide a general workflow, going from data and segmentation loading, 3D heart modeling, analysis and several options for visualization of the myocardial strain.
RESULTS: CardIAc strain feature was evaluated on a public dataset (Cardiac Motion Analysis Challenge-STACOM 2011) of 15 volunteers, and a synthetic one generated from this real dataset. Results on the real dataset show that cardIAc achieves suitable accuracy for myocardial motion estimation with a median error of 3.66 mm. In particular, global strain curves show strong correlation with the bibliography for healthy patients and similar approaches. On the other hand, results on the synthetic dataset show a mean global error of 4.07%, 7.76% and 8.18% for circumferential, radial and longitudinal strain.
CONCLUSION: This paper introduces a new open-source application for strain analysis distributed under a BSD-style open-source license. Results demonstrate the capability and merits of the proposed application for strain analysis.

Keywords

References

  1. Claus P, Omar AMS, Pedrizzetti G, Sengupta PP, Nagel E (2015) Tissue tracking technology for assessing cardiac mechanics. Principles, normal values, and clinical applications. JACC Cardiovasc Imaging 8(12):1444–1460. https://doi.org/10.1016/j.jcmg.2015.11.001 [DOI: 10.1016/j.jcmg.2015.11.001]
  2. Lu JC, Balasubramanian S, Yu S, Mahani MG, Agarwal PP, Dorfman AL (2019) Reproducibility and agreement of tissue tracking versus feature tracking for strain measurement on cardiac MR images in patients with repaired Tetralogy of Fallot. Radiol Cardiothor Imaging 1(1):e180005. https://doi.org/10.1148/ryct.2019180005 [DOI: 10.1148/ryct.2019180005]
  3. Voigt J-U, Cvijic M (2019) 2- and 3-dimensional myocardial strain in cardiac health and disease. JACC Cardiovasc Imaging 12(9):1849–1863. https://doi.org/10.1016/j.jcmg.2019.01.044 [DOI: 10.1016/j.jcmg.2019.01.044]
  4. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Bautti J, Aylward S, Miller J, Piper S, Kikins R (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341. https://doi.org/10.1016/j.mri.2012.05.001 [DOI: 10.1016/j.mri.2012.05.001]
  5. Thirion JP (1998) Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal 2(3):243–260. https://doi.org/10.1016/S1361-8415(98)80022-4 [DOI: 10.1016/S1361-8415(98)80022-4]
  6. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105(4):539–542. https://doi.org/10.1161/hc0402.102975 [DOI: 10.1161/hc0402.102975]
  7. D’hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, Hatle L, Suetens P, Sutherland G (2000) Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 1(3):154–170. https://doi.org/10.1053/euje.2000.0031 [DOI: 10.1053/euje.2000.0031]
  8. Vercauteren T, Pennec X, Perchant A, Ayache N (2007) Diffeomorphic demons using itk’s finite difference solver hierarchy. Insight J 2007:1
  9. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, Nesser H, Khandheria B, Narula J, Sengupta P (2010) Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 23(4):351–369. https://doi.org/10.1016/j.echo.2010.02.015 [DOI: 10.1016/j.echo.2010.02.015]
  10. Muser D, Castro SA, Santangeli P, Nucifora G (2018) Clinical applications of feature-tracking cardiac magnetic resonance imaging. World J Cardiol 10(11):210–221. https://doi.org/10.4330/wjc.v10.i11.210 [DOI: 10.4330/wjc.v10.i11.210]
  11. Klein S (2010) Staring m murphy k viergever ma pluim jpw, Elastix: a toolbox for intensity based medical image registration. IEEE Trans Med Imaging 29:196–205 [DOI: 10.1109/TMI.2009.2035616]
  12. Queirós S, Morais P, Barbosa D, Fonseca JC, Vilaça JL, D’hooge J (2018) Mitt: medical image tracking toolbox. IEEE Trans Med Imaging 37(11):2547–2557 [DOI: 10.1109/TMI.2018.2840820]
  13. http://medviso.com/documents/segment/manualstrain.pdf
  14. https://www.circlecvi.com/docs/product-support/manuals/cvi42_user_manual_v5.11.pdf
  15. http://92.103.51.217/vital/help/en/pdf/A.19.0555-02
  16. https://medisimaging.com/wp-content/uploads/2020/09/05-QStrain-Leaflet.pdf
  17. Tobon-Gomez C, Craene MD, McLeod K, Tautz L, Shi W, Hennemuth A, Prakosa A, Wang H, Carr-White G, Kapetanakis S, Lutz A, Rasche V, Schaeffter T, Butakoff C, Friman O, Mansi T, Sermesant M, Zhuang X, Ourselin S, Peitgen H-O, Pennec X, Razavi R, Rueckert D, Frangi A, Rhode K (2013) Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Med Image Anal 17(6):632–648. https://doi.org/10.1016/j.media.2013.03.008 [DOI: 10.1016/j.media.2013.03.008]
  18. De Craene M, Piella G, Camara O, Duchateau N, Silva E, Doltra A, D’hooge J, Brugada J, Sitges M, Frangi AF (2012) Temporal diffeomorphic free-form deformation: application to motion and strain estimation from 3D echocardiography. Med Image Anal 16(2):427–450. https://doi.org/10.1016/j.media.2011.10.006
  19. Mansi T, Pennec X, Sermesant M, Delingette H, Ayache N (2011) ilogdemons: a demons-based registration algorithm for tracking incompressible elastic biological tissues. Int J Comput Vis 92(1):92–111. https://doi.org/10.1007/s11263-010-0405-z [DOI: 10.1007/s11263-010-0405-z]
  20. Duchateau N, Sermesant M, Delingette H, Ayache N (2018) Model-based generation of large databases of cardiac images: synthesis of pathological cine MR sequences from real healthy cases. IEEE Trans Med Imaging 37(3):755–766 [DOI: 10.1109/TMI.2017.2714343]
  21. Kowallick JT, Morton G, Lamata P, Jogiya R, Kutty S, Lotz J, Hasenfu G, Nagel E, Chiribiri A, Schuster A (2016) Inter-study reproducibility of left ventricular torsion and torsion rate quantification using MR myocardial feature tracking. J Magn Reson Imaging 43(1):128–137. https://doi.org/10.1002/jmri.24979 [DOI: 10.1002/jmri.24979]
  22. Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26(2):185–191. https://doi.org/10.1016/j.echo.2012.10.008 [DOI: 10.1016/j.echo.2012.10.008]
  23. Curiale AH, Vegas-Sanchez-Ferrero G, Aja-Fernndez S (2016) Influence of speckle tracking strategies in motion and strain estimation. Med Image Anal 32:184–200 [DOI: 10.1016/j.media.2016.04.002]

Grants

  1. PIP 112 201301 00256/CONICET

MeSH Term

Heart
Heart Ventricles
Humans
Magnetic Resonance Imaging
Magnetic Resonance Imaging, Cine
Models, Cardiovascular
Myocardium
Reproducibility of Results
Software
Ventricular Function, Left