Cost-effectiveness of Interventions to Increase HPV Vaccine Uptake.

Jennifer C Spencer, Noel T Brewer, Justin G Trogdon, Morris Weinberger, Tamera Coyne-Beasley, Stephanie B Wheeler
Author Information
  1. Jennifer C Spencer: Department of Health Policy and Management, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; jspencer@hsph.harvard.edu.
  2. Noel T Brewer: Health Behavior, Gillings School of Global Public Health and.
  3. Justin G Trogdon: Departments of Health Policy and Management and.
  4. Morris Weinberger: Departments of Health Policy and Management and.
  5. Tamera Coyne-Beasley: Division of Adolescent Medicine, Departments of Pediatrics and Internal Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
  6. Stephanie B Wheeler: Departments of Health Policy and Management and.

Abstract

OBJECTIVES: We sought to prioritize interventions for increasing human papillomavirus (HPV) vaccination coverage based on cost-effectiveness from a US state perspective to inform decisions by policy makers.
METHODS: We developed a dynamic simulation model of HPV transmission and progression scaled to a medium-sized US state (5 million individuals). We modeled outcomes over 50 years comparing no intervention to a one-year implementation of centralized reminder and recall for HPV vaccination, school-located HPV vaccination, or quality improvement (QI) visits to primary care clinics. We used probabilistic sensitivity analysis to assess a range of plausible outcomes associated with each intervention. Cost-effectiveness was evaluated relative to a conservative willingness-to-pay threshold; $50���000 per quality-adjusted life-year (QALY) .
RESULTS: All interventions were cost-effective, relative to no intervention. QI visits had the lowest cost and cost per QALY gained ($1538 versus no intervention). Statewide implementation of centralized reminder and recall cost $28���289 per QALY gained versus QI visits. School-located vaccination had the highest cost but was cost-effective at $18���337 per QALY gained versus QI visits. Scaling to the US population, interventions could avert 3000 to 14���000 future HPV cancers. When varying intervention cost and impact over feasible ranges, interventions were typically preferred to no intervention, but cost-effectiveness varied between intervention strategies.
CONCLUSIONS: Three interventions for increasing HPV vaccine coverage were cost-effective and offered substantial health benefits. Policy makers seeking to increase HPV vaccination should, at minimum, dedicate additional funding for QI visits, which are consistently effective at low cost and may additionally consider more resource-intensive interventions (reminder and recall or school-located vaccination).

References

  1. Am J Public Health. 2016 Jan;106(1):56-7 [PMID: 26562115]
  2. Lancet Public Health. 2016 Nov;1(1):e8-e17 [PMID: 29253379]
  3. J Public Health Manag Pract. 2015 May-Jun;21(3):273-81 [PMID: 25590511]
  4. Vaccine. 2015 Feb 25;33(9):1223-9 [PMID: 25448095]
  5. Am J Prev Med. 2000 Jan;18(1 Suppl):97-140 [PMID: 10806982]
  6. Cancer Prev Res (Phila). 2015 Jul;8(7):636-41 [PMID: 25943743]
  7. Clin Infect Dis. 2017 May 1;64(9):1228-1235 [PMID: 28199532]
  8. Am J Prev Med. 2004 Jan;26(1):41-5 [PMID: 14700711]
  9. MMWR Morb Mortal Wkly Rep. 2019 Aug 23;68(33):718-723 [PMID: 31437143]
  10. Acad Pediatr. 2017 Apr;17(3):330-338 [PMID: 27913163]
  11. Pediatrics. 2014 Aug;134(2):e346-53 [PMID: 25002671]
  12. Vaccine. 2013 Aug 20;31(37):3863-71 [PMID: 23830974]
  13. Vaccine. 2011 Oct 26;29(46):8443-50 [PMID: 21816193]
  14. Hum Vaccin Immunother. 2016 Jun 2;12(6):1599-605 [PMID: 27171022]
  15. J Adolesc Health. 2015 May;56(5 Suppl):S17-20 [PMID: 25863549]
  16. Vaccine. 2011 Mar 21;29(14):2537-41 [PMID: 21300094]
  17. Am J Epidemiol. 2018 Feb 1;187(2):298-305 [PMID: 28641366]
  18. BMC Infect Dis. 2018 Jan 25;18(1):52 [PMID: 29370768]
  19. J Pediatr Health Care. 2014 Nov-Dec;28(6):541-9 [PMID: 25017939]
  20. Am J Prev Med. 2016 Jun;50(6):797-808 [PMID: 26847663]
  21. Vaccine. 2013 Jun 24;31(29):3019-24 [PMID: 23664991]
  22. JAMA. 2016 Sep 13;316(10):1093-103 [PMID: 27623463]
  23. N Engl J Med. 2008 Aug 21;359(8):821-32 [PMID: 18716299]
  24. Implement Sci. 2014 Feb 18;9:21 [PMID: 24533515]
  25. Pediatrics. 2016 Jul;138(1): [PMID: 27296865]
  26. BMC Public Health. 2014 Jul 15;14:718 [PMID: 25023889]
  27. Rep Prog Phys. 2014;77(2):026602 [PMID: 24444713]
  28. Sex Transm Dis. 2017 Jun;44(6):365-370 [PMID: 28499288]
  29. J Adolesc Health. 2014 Mar;54(3):282-8 [PMID: 24560036]
  30. Eur J Health Econ. 2013 Jun;14(3):367-72 [PMID: 23526140]
  31. Am J Prev Med. 2001 Nov;21(4):267-71 [PMID: 11701296]
  32. Vaccine. 2012 Jul 13;30(33):4960-3 [PMID: 22652406]
  33. Hum Vaccin Immunother. 2017 Mar 4;13(3):680-686 [PMID: 27763818]
  34. Pediatr Infect Dis J. 2015 Sep;34(9):992-8 [PMID: 26090572]
  35. Sex Transm Dis. 2015 Feb;42(2):71-5 [PMID: 25585064]
  36. Prev Med Rep. 2019 May 22;15:100893 [PMID: 31193580]
  37. Pediatrics. 2016 Dec;138(6): [PMID: 27940689]
  38. J Womens Health (Larchmt). 2017 Mar;26(3):200-206 [PMID: 28263672]
  39. J Adolesc Health. 2015 May;56(5 Suppl):S40-6 [PMID: 25863554]
  40. Clin Vaccine Immunol. 2015 Apr;22(4):361-73 [PMID: 25651922]
  41. Psychol Sci Public Interest. 2017 Dec;18(3):149-207 [PMID: 29611455]
  42. J Adolesc Health. 2017 Jan;60(1):113-119 [PMID: 27836533]
  43. Acad Pediatr. 2013 May-Jun;13(3):204-13 [PMID: 23510607]
  44. Hum Vaccin Immunother. 2016 Nov;12(11):2872-2874 [PMID: 27548752]
  45. J Infect Dis. 2019 Jan 29;219(4):590-598 [PMID: 30239749]
  46. Acad Pediatr. 2018 Mar;18(2S):S101-S105 [PMID: 29502627]
  47. MMWR Morb Mortal Wkly Rep. 2019 Aug 23;68(33):724-728 [PMID: 31437140]
  48. Cochrane Database Syst Rev. 2018 Jan 18;1:CD003941 [PMID: 29342498]
  49. Hum Vaccin Immunother. 2016 Jun 2;12(6):1394-402 [PMID: 26933961]
  50. Proc Natl Acad Sci U S A. 2016 May 3;113(18):5107-12 [PMID: 27091978]
  51. J Sch Health. 2013 Feb;83(2):119-26 [PMID: 23331272]
  52. N Engl J Med. 2015 Feb 19;372(8):775-6 [PMID: 25693018]

Grants

  1. T32 CA092203/NCI NIH HHS
  2. T32 CA116339/NCI NIH HHS

MeSH Term

Adolescent
Alphapapillomavirus
Child
Cost-Benefit Analysis
Female
Humans
Male
Markov Chains
Papillomavirus Infections
Papillomavirus Vaccines
Quality-Adjusted Life Years
United States
Vaccination

Chemicals

Papillomavirus Vaccines

Word Cloud

Created with Highcharts 10.0.0HPVinterventioninterventionsvaccinationcostQIvisitsperQALYUSreminderrecallcost-effectivegainedversusincreasingcoveragecost-effectivenessstatemakersoutcomesimplementationcentralizedschool-locatedCost-effectivenessrelativeOBJECTIVES:soughtprioritizehumanpapillomavirusbasedperspectiveinformdecisionspolicyMETHODS:developeddynamicsimulationmodeltransmissionprogressionscaledmedium-sized5millionindividualsmodeled50yearscomparingone-yearqualityimprovementprimarycareclinicsusedprobabilisticsensitivityanalysisassessrangeplausibleassociatedevaluatedconservativewillingness-to-paythreshold$50���000quality-adjustedlife-yearRESULTS:lowest$1538Statewide$28���289School-locatedhighest$18���337Scalingpopulationavert300014���000futurecancersvaryingimpactfeasiblerangestypicallypreferredvariedstrategiesCONCLUSIONS:ThreevaccineofferedsubstantialhealthbenefitsPolicyseekingincreaseminimumdedicateadditionalfundingconsistentlyeffectivelowmayadditionallyconsiderresource-intensiveInterventionsIncreaseVaccineUptake

Similar Articles

Cited By (14)