Heterocyst Development and Diazotrophic Growth of under Different Nitrogen Availability.

Nur Syahidah Zulkefli, Soon-Jin Hwang
Author Information
  1. Nur Syahidah Zulkefli: Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea.
  2. Soon-Jin Hwang: Department of Environmental Health Science and Human and Eco-care Center, Konkuk University, Seoul 05029, Korea. ORCID

Abstract

Nitrogen is globally limiting primary production in the ocean, but some species of cyanobacteria can carry out nitrogen (N) fixation using specialized cells known as heterocysts. However, the effect of N sources and their availability on heterocyst development is not yet fully understood. This study aimed to evaluate the effect of various inorganic N sources on the heterocyst development and cellular growth in an N-fixing cyanobacterium, . Growth rate, heterocyst development, and cellular N content of the cyanobacteria were examined under varying nitrate and ammonium concentrations. exhibited high growth rate both in the presence and absence of N sources regardless of their concentration. Ammonium was the primary source of N in Even the highest concentrations of both nitrate (1.5 g L as NaNO) and ammonium (0.006 g L as Fe-NH-citrate) did not exhibit an inhibitory effect on heterocyst development. Heterocyst production positively correlated with the cell N quota and negatively correlated with vegetative cell growth, indicating that both of the processes were interdependent. Taken together, N deprivation triggers heterocyst production for N fixation. This study outlines the difference in heterocyst development and growth in under different N sources.

Keywords

References

  1. Curr Opin Microbiol. 2003 Dec;6(6):557-63 [PMID: 14662350]
  2. Environ Sci Technol. 2018 May 15;52(10):5653-5661 [PMID: 29688011]
  3. Microbiol Rev. 1992 Jun;56(2):340-73 [PMID: 1620069]
  4. J Biol Chem. 2001 Oct 12;276(41):38320-8 [PMID: 11479309]
  5. Ambio. 2015 Jun;44 Suppl 3:413-26 [PMID: 26022324]
  6. Bacteriol Rev. 1971 Jun;35(2):171-205 [PMID: 4998365]
  7. J Cell Sci. 1973 May;12(3):707-23 [PMID: 4198321]
  8. Environ Microbiol. 2016 Dec;18(12):4596-4609 [PMID: 27696654]
  9. Sci Rep. 2018 Apr 4;8(1):5651 [PMID: 29618756]
  10. ISME J. 2016 Feb;10(2):450-9 [PMID: 26262817]
  11. Harmful Algae. 2016 Dec;60:131-138 [PMID: 28073556]
  12. Curr Protoc Microbiol. 2019 Feb;52(1):e71 [PMID: 30398694]
  13. Sci Rep. 2015 Nov 18;5:16470 [PMID: 26576507]
  14. J Bacteriol. 2001 Jan;183(2):411-25 [PMID: 11133933]
  15. Microorganisms. 2017 Aug 04;5(3): [PMID: 28777340]
  16. J Bacteriol. 1968 Dec;96(6):2138-43 [PMID: 5724976]
  17. Adv Exp Med Biol. 2008;619:675-732 [PMID: 18461789]
  18. J Bacteriol. 2001 Jan;183(1):280-6 [PMID: 11114927]
  19. Appl Environ Microbiol. 2001 Aug;67(8):3340-9 [PMID: 11472902]
  20. Environ Sci Technol. 2015 Jan 20;49(2):1051-9 [PMID: 25495555]
  21. Trans Am Microsc Soc. 1974 Oct;93(4):610-3 [PMID: 4614531]
  22. FEMS Microbiol Lett. 2015 Mar;362(5): [PMID: 25757729]
  23. J Gen Microbiol. 1976 Sep;96(1):175-84 [PMID: 824402]
  24. Sci Rep. 2017 Jul 14;7(1):5402 [PMID: 28710405]
  25. Microb Biotechnol. 2017 Sep;10(5):1106-1110 [PMID: 28639406]
  26. Water Res. 2012 Apr 1;46(5):1394-407 [PMID: 22217430]
  27. Nature. 1970 Oct 10;228(5267):181-3 [PMID: 4990051]
  28. Microb Ecol. 2009 May;57(4):675-86 [PMID: 18709402]
  29. F1000Res. 2017 Mar 9;6:244 [PMID: 28357051]
  30. Curr Opin Plant Biol. 2003 Jun;6(3):236-46 [PMID: 12753973]
  31. Front Microbiol. 2017 Jun 16;8:1132 [PMID: 28670308]
  32. FEMS Microbiol Rev. 2016 Nov 1;40(6):831-854 [PMID: 28204529]
  33. Cold Spring Harb Perspect Biol. 2010 Apr;2(4):a000315 [PMID: 20452939]
  34. FEMS Microbiol Ecol. 2012 Mar;79(3):800-11 [PMID: 22126519]
  35. Appl Environ Microbiol. 1994 Mar;60(3):880-7 [PMID: 8161180]
  36. Science. 1998 Oct 30;282(5390):935-8 [PMID: 9794762]
  37. J Phycol. 2016 Oct;52(5):854-862 [PMID: 27440068]
  38. Microbiology (Reading). 2007 Nov;153(Pt 11):3704-3712 [PMID: 17975078]
  39. PLoS One. 2013;8(2):e56103 [PMID: 23405255]

Grants

  1. Konkuk University 2019/Konkuk University

Word Cloud

Created with Highcharts 10.0.0NheterocystdevelopmentgrowthsourcesproductioneffectcellNitrogenprimarycyanobacterianitrogenfixationavailabilitystudycellularGrowthratenitrateammoniumconcentrationsgLHeterocystcorrelatedquotagloballylimitingoceanspeciescancarryusingspecializedcellsknownheterocystsHoweveryetfullyunderstoodaimedevaluatevariousinorganicN-fixingcyanobacteriumcontentexaminedvaryingexhibitedhighpresenceabsenceregardlessconcentrationAmmoniumsourceEvenhighest15NaNO0006Fe-NH-citrateexhibitinhibitorypositivelynegativelyvegetativeindicatingprocessesinterdependentTakentogetherdeprivationtriggersoutlinesdifferencedifferentDevelopmentDiazotrophicDifferentAvailabilityAnabaena variabilisdiazotrophicnitrogen-fixation

Similar Articles

Cited By