Quality-by-Design Approach for the Development of Nano-Sized Tea Tree Oil Formulation-Impregnated Biocompatible Gel with Antimicrobial Properties.

Thabata Muta, Ankit Parikh, Krishna Kathawala, Hanif Haidari, Yunmei Song, Jackson Thomas, Sanjay Garg
Author Information
  1. Thabata Muta: Pharmaceutical Innovation and Development Group (PIDG), UniSA Clinical & Health Science, University of South Australia, City West Campus, North Terrace, Adelaide, SA 5000, Australia.
  2. Ankit Parikh: Pharmaceutical Innovation and Development Group (PIDG), UniSA Clinical & Health Science, University of South Australia, City West Campus, North Terrace, Adelaide, SA 5000, Australia.
  3. Krishna Kathawala: Pharmaceutical Innovation and Development Group (PIDG), UniSA Clinical & Health Science, University of South Australia, City West Campus, North Terrace, Adelaide, SA 5000, Australia.
  4. Hanif Haidari: Pharmaceutical Innovation and Development Group (PIDG), UniSA Clinical & Health Science, University of South Australia, City West Campus, North Terrace, Adelaide, SA 5000, Australia.
  5. Yunmei Song: Pharmaceutical Innovation and Development Group (PIDG), UniSA Clinical & Health Science, University of South Australia, City West Campus, North Terrace, Adelaide, SA 5000, Australia.
  6. Jackson Thomas: Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia.
  7. Sanjay Garg: Pharmaceutical Innovation and Development Group (PIDG), UniSA Clinical & Health Science, University of South Australia, City West Campus, North Terrace, Adelaide, SA 5000, Australia. ORCID

Abstract

Despite the promising properties of tea tree oil (TTO) as potential therapeutics for several superficial skin conditions, certain limitations such as physical instability and skin irritation have restricted its widespread use. This study focuses on developing a rationally designed lipid-based nanoformulation (TTO-LNF) in accordance with the US Food and Drug Administration standard using a well-recognized quality-by-design (QbD) approach. Using a mixture experimental design, TTO-LNF has been optimized with 5% TTO, 10% surfactant, 5% co-surfactant, and 80% water, which showed a 14.4 ± 4.4 nm droplet size and 0.03 ± 0.01 polydispersity index (PDI). To ease the topical administration, the TTO-LNF gel formulation was further developed using xanthan gum to achieve the desired viscosity and form a gel. The in vitro antibacterial tests of TTO-LNF showed promising inhibitory effects toward both Gram-negative and Gram-positive bacteria. In fact, a complete growth inhibition of was observed when exposed to TTO-LNF and TTO-LNF gel for 24 h, showing better activity than antibiotic kanamycin (25 µg/mL). Additionally, the in vitro release study showed a sustained release profile with a 50% release in 24 h, which could be beneficial to reduce the toxicity and thereby improve the therapeutic efficacy for long-acting applications. Furthermore, the formulations were remarkably stable at 40 °C/75% Relative humidity (RH) for at least 4 weeks. Therefore, this study presents a promising strategy to develop a biocompatible and stable formulation that can be used for the topical treatment of skin infections.

Keywords

References

  1. Antimicrob Agents Chemother. 2012 Feb;56(2):909-15 [PMID: 22083482]
  2. AAPS PharmSciTech. 2012 Mar;13(1):184-92 [PMID: 22187363]
  3. Australas J Dermatol. 2007 May;48(2):83-7 [PMID: 17535193]
  4. Pharmazie. 2005 Mar;60(3):208-11 [PMID: 15801675]
  5. Eur J Pharm Sci. 2018 Jul 30;120:142-151 [PMID: 29684425]
  6. AAPS J. 2013 Jan;15(1):41-52 [PMID: 23054971]
  7. AAPS PharmSciTech. 2009;10(1):69-76 [PMID: 19148761]
  8. Antimicrob Agents Chemother. 2009 Jan;53(1):136-45 [PMID: 18955535]
  9. Int J Nanomedicine. 2011;6:1245-51 [PMID: 21753876]
  10. Drug Deliv Transl Res. 2018 Oct;8(5):1389-1405 [PMID: 29845380]
  11. Adv Colloid Interface Sci. 2004 May 20;108-109:145-9 [PMID: 15072937]
  12. Clin Microbiol Rev. 2006 Jan;19(1):50-62 [PMID: 16418522]
  13. Drug Dev Ind Pharm. 2018 May;44(5):837-848 [PMID: 29252038]
  14. Am J Trop Med Hyg. 2016 Feb;94(2):258-266 [PMID: 26787146]
  15. J Am Acad Dermatol. 2006 Apr;54(4):715-7 [PMID: 16546598]
  16. Pharmaceutics. 2018 May 18;10(2): [PMID: 29783687]
  17. ACS Appl Mater Interfaces. 2020 Sep 16;12(37):41011-41025 [PMID: 32840353]
  18. BMJ Open. 2018 May 31;8(5):e018507 [PMID: 29858405]
  19. Fundam Appl Toxicol. 1993 Aug;21(2):213-21 [PMID: 8405784]
  20. AAPS J. 2014 Jul;16(4):771-83 [PMID: 24854893]
  21. Contact Dermatitis. 1995 Oct;33(4):217-25 [PMID: 8654070]
  22. Drug Deliv. 2017 Nov;24(1):962-978 [PMID: 28633547]
  23. Int J Nanomedicine. 2015 Oct 13;10:6469-76 [PMID: 26508853]
  24. J Appl Microbiol. 2000 Jan;88(1):170-5 [PMID: 10735256]
  25. J Pediatr. 2006 Sep;149(3):378-82 [PMID: 16939752]
  26. Nanomedicine. 2010 Feb;6(1):9-24 [PMID: 19447208]
  27. Int J Pharm. 2016 Dec 30;515(1-2):490-500 [PMID: 27789367]
  28. Biomicrofluidics. 2016 Sep 21;10(5):054107 [PMID: 27703593]
  29. Drug Dev Ind Pharm. 2016 Sep;42(9):1434-45 [PMID: 26821208]
  30. Natl Toxicol Program Tech Rep Ser. 1992 Jan;415:1-225 [PMID: 12616296]
  31. Drug Dev Ind Pharm. 2016 Oct;42(10):1636-42 [PMID: 26925849]
  32. Prev Nutr Food Sci. 2019 Sep;24(3):225-234 [PMID: 31608247]
  33. Drug Des Devel Ther. 2018 Jul 05;12:2051-2069 [PMID: 30013324]
  34. Int J Toxicol. 2003 Sep-Oct;22(5):377-80 [PMID: 14555410]
  35. Front Microbiol. 2016 Nov 22;7:1878 [PMID: 27920774]
  36. Contact Dermatitis. 2016 Sep;75(3):129-43 [PMID: 27173437]
  37. Eur J Pharm Biopharm. 2006 Oct;64(2):222-8 [PMID: 16846726]
  38. Mycopathologia. 2013 Apr;175(3-4):281-6 [PMID: 23392821]
  39. Int J Dermatol. 2013 Jul;52(7):784-90 [PMID: 22998411]
  40. Nanoscale Adv. 2019 Apr 30;1(6):2365-2371 [PMID: 36131988]
  41. Int J Nanomedicine. 2014 Feb 12;9:951-62 [PMID: 24611011]
  42. J Hosp Infect. 2004 Apr;56(4):283-6 [PMID: 15066738]

Word Cloud

Created with Highcharts 10.0.0TTO-LNF4releasepromisingskinstudydesignshowedtopicalgelteatreeoilTTOlipid-basedusingmixtureexperimental5%±0formulationvitro24hactivitystableDespitepropertiespotentialtherapeuticsseveralsuperficialconditionscertainlimitationsphysicalinstabilityirritationrestrictedwidespreadusefocusesdevelopingrationallydesignednanoformulationaccordanceUSFoodDrugAdministrationstandardwell-recognizedquality-by-designQbDapproachUsingoptimized10%surfactantco-surfactant80%water14nmdropletsize0301polydispersityindexPDIeaseadministrationdevelopedxanthangumachievedesiredviscosityformantibacterialtestsinhibitoryeffectstowardGram-negativeGram-positivebacteriafactcompletegrowthinhibitionobservedexposedshowingbetterantibiotickanamycin25µg/mLAdditionallysustainedprofile50%beneficialreducetoxicitytherebyimprovetherapeuticefficacylong-actingapplicationsFurthermoreformulationsremarkably40°C/75%RelativehumidityRHleastweeksThereforepresentsstrategydevelopbiocompatiblecanusedtreatmentinfectionsQuality-by-DesignApproachDevelopmentNano-SizedTeaTreeOilFormulation-ImpregnatedBiocompatibleGelAntimicrobialPropertiesPseudomonasaeruginosaStaphylococcusepidermidisacceleratedstabilityassessmentanti-microbialcontrollednanotechnologyqualitydrugdelivery

Similar Articles

Cited By