Opioid-Induced Hyperalgesic Priming in Single Nociceptors.

Eugen V Khomula, Dionéia Araldi, Ivan J M Bonet, Jon D Levine
Author Information
  1. Eugen V Khomula: Departments of Medicine and Oral and Maxillofacial Surgery, Division of Neuroscience, and UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143. ORCID
  2. Dionéia Araldi: Departments of Medicine and Oral and Maxillofacial Surgery, Division of Neuroscience, and UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143. ORCID
  3. Ivan J M Bonet: Departments of Medicine and Oral and Maxillofacial Surgery, Division of Neuroscience, and UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143. ORCID
  4. Jon D Levine: Departments of Medicine and Oral and Maxillofacial Surgery, Division of Neuroscience, and UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143 jon.levine@ucsf.edu. ORCID

Abstract

Clinical µ-opioid receptor (MOR) agonists produce hyperalgesic priming, a form of maladaptive nociceptor neuroplasticity, resulting in pain chronification. We have established an model of opioid-induced hyperalgesic priming (OIHP), in male rats, to identify nociceptor populations involved and its maintenance mechanisms. OIHP was induced by systemic administration of fentanyl and confirmed by prolongation of prostaglandin E (PGE) hyperalgesia. Intrathecal cordycepin, which reverses Type I priming, or the combination of Src and mitogen-activated protein kinase (MAPK) inhibitors, which reverses Type II priming, both partially attenuated OIHP. Parallel experiments were performed on small-diameter (<30 µm) dorsal root ganglion (DRG) neurons, cultured from fentanyl-primed rats, and rats with OIHP treated with agents that reverse Type I or Type II priming. Enhancement of the sensitizing effect of a low concentration of PGE (10 nm), another characteristic feature of priming, measured as reduction in action potential (AP) rheobase, was found in weakly isolectin B4 (IB4)-positive and IB4-negative (IB4-) neurons. In strongly IB4-positive (IB4+) neurons, only the response to a higher concentration of PGE (100 nm) was enhanced. The sensitizing effect of 10 nm PGE was attenuated in weakly IB4+ and IB4- neurons cultured from rats whose OIHP was reversed Thus, administration of fentanyl induces neuroplasticity in weakly IB4+ and IB4- nociceptors that persists and has properties of Type I and Type II priming. The mechanism underlying the enhanced sensitizing effect of 100 nm PGE in strongly IB4+ nociceptors, not attenuated by inhibitors of Type I and Type II priming, remains to be elucidated. Commonly used clinical opioid analgesics, such as fentanyl and morphine, can produce hyperalgesia and chronification of pain. To uncover the nociceptor population mediating opioid-induced hyperalgesic priming (OIHP), a model of pain chronification, and elucidate its underlying mechanism, at the cellular level, we established an model of OIHP. In dorsal root ganglion (DRG) neurons cultured from rats primed with fentanyl, robust nociceptor population-specific changes in sensitization by prostaglandin E (PGE) were observed, when compared with nociceptors from opioid naive rats. In DRG neurons cultured from rats with OIHP, enhanced PGE-induced sensitization was observed , with differences identified in non-peptidergic [strongly isolectin B4 (IB4)-positive] and peptidergic [weakly IB4-positive (IB4+) and IB4-negative (IB4-)] nociceptors.

Keywords

References

  1. Jpn J Physiol. 1993;43 Suppl 1:S7-11 [PMID: 8271518]
  2. Brain Res. 1989 Jul 17;492(1-2):397-9 [PMID: 2665905]
  3. J Neurosci. 1999 Aug 1;19(15):6497-505 [PMID: 10414978]
  4. J Neurophysiol. 2000 Nov;84(5):2365-79 [PMID: 11067979]
  5. Mol Pain. 2012 Jan 13;8:4 [PMID: 22243518]
  6. Nature. 1968 May 4;218(5140):438-41 [PMID: 5649693]
  7. Kidney Int. 2008 Aug;74(4):478-85 [PMID: 18496512]
  8. Pain Physician. 2014 Sep-Oct;17(5):401-14 [PMID: 25247898]
  9. J Neurosci. 2006 Jul 5;26(27):7281-92 [PMID: 16822986]
  10. Neuroscience. 2018 Dec 1;394:60-71 [PMID: 30342200]
  11. J Neurosci. 2019 Sep 4;39(36):7061-7073 [PMID: 31300521]
  12. J Neurosci. 2015 Sep 9;35(36):12502-17 [PMID: 26354917]
  13. J Pain Palliat Care Pharmacother. 2015 Jun;29(2):153-60 [PMID: 26095487]
  14. Am J Physiol Renal Physiol. 2005 Mar;288(3):F466-73 [PMID: 15692058]
  15. Pain. 2013 Dec;154 Suppl 1:S2-9 [PMID: 23711480]
  16. Biosci Trends. 2018 May 13;12(2):177-184 [PMID: 29657246]
  17. J Clin Anesth. 2019 Nov;57:57-62 [PMID: 30870677]
  18. Pain. 2013 Oct;154(10):2207-15 [PMID: 23831864]
  19. Pain. 2016 Mar;157(3):698-709 [PMID: 26588695]
  20. J Physiol. 1985 Feb;359:31-46 [PMID: 3999040]
  21. J Neurosci. 1998 Dec 15;18(24):10345-55 [PMID: 9852572]
  22. Sci Rep. 2016 Aug 08;6:31221 [PMID: 27499186]
  23. J Pharm Pract. 2018 Dec;31(6):658-669 [PMID: 28946783]
  24. Br J Anaesth. 2012 Oct;109(4):616-22 [PMID: 22831889]
  25. J Neurosci. 2010 Mar 31;30(13):4660-6 [PMID: 20357116]
  26. Am J Physiol. 1999 May;276(5):R1241-8 [PMID: 10233013]
  27. J Pain. 2014 Apr;15(4):378-86 [PMID: 24389017]
  28. CNS Drugs. 2019 Oct;33(10):943-955 [PMID: 31578704]
  29. Cell. 2009 Jun 12;137(6):1148-59 [PMID: 19524516]
  30. J Neurosci. 1998 Apr 15;18(8):3059-72 [PMID: 9526023]
  31. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1108-12 [PMID: 8577723]
  32. J Neurosci. 2018 Feb 28;38(9):2226-2245 [PMID: 29431655]
  33. Am J Health Syst Pharm. 2019 Sep 3;76(18):1403-1412 [PMID: 31505561]
  34. J Pain. 2013 Jul;14(7):731-8 [PMID: 23664545]
  35. Pain Physician. 2012 Jul;15(3 Suppl):ES9-38 [PMID: 22786464]
  36. Cephalalgia. 2009 Dec;29(12):1277-84 [PMID: 19438917]
  37. Pain Med. 2015 Oct;16 Suppl 1:S32-6 [PMID: 26461074]
  38. J Neurosci. 2000 Jun 15;20(12):4680-5 [PMID: 10844037]
  39. J Neurosci. 2017 Feb 22;37(8):2032-2044 [PMID: 28115480]
  40. J Neurosci. 2019 Aug 14;39(33):6414-6424 [PMID: 31209174]
  41. Neuroscience. 1996 Mar;71(1):265-75 [PMID: 8834408]
  42. J Clin Oncol. 2008 Mar 20;26(9):1564; author reply 1565 [PMID: 18349412]
  43. J Neurosci. 2008 May 28;28(22):5721-30 [PMID: 18509033]
  44. Biol Pharm Bull. 2011;34(8):1170-3 [PMID: 21804201]
  45. J Pain. 2015 Jan;16(1):60-6 [PMID: 25451625]
  46. J Comp Neurol. 2003 May 26;460(2):255-65 [PMID: 12687689]
  47. J Neurosci. 2018 Jan 10;38(2):308-321 [PMID: 29175954]
  48. Neuron. 2007 Aug 2;55(3):353-64 [PMID: 17678850]
  49. Neurosci Lett. 2015 Sep 14;604:193-8 [PMID: 26240991]
  50. Neurosci Lett. 1996 Mar 1;205(3):161-4 [PMID: 8852583]
  51. Neuroscience. 2001;108(1):143-55 [PMID: 11738138]
  52. Neuroscience. 2003;120(1):219-26 [PMID: 12849754]
  53. Neuroscience. 2003;119(1):223-32 [PMID: 12763083]
  54. Neuron. 1998 Apr;20(4):629-32 [PMID: 9581756]
  55. Neuron. 1997 Oct;19(4):849-61 [PMID: 9354331]
  56. Can J Anaesth. 1999 Sep;46(9):872-7 [PMID: 10490157]
  57. Pharmacol Res. 2019 Oct;148:104447 [PMID: 31499196]
  58. Neuroscience. 2007 May 25;146(3):1333-45 [PMID: 17418497]
  59. Neuroscience. 2019 Feb 1;398:64-75 [PMID: 30529265]
  60. Nat Med. 2017 Feb;23(2):164-173 [PMID: 28092666]
  61. Pain Physician. 2009 May-Jun;12(3):679-84 [PMID: 19461836]
  62. Neuroscience. 2010 Aug 11;169(1):431-5 [PMID: 20457222]
  63. Int J Cardiol. 2011 Feb 17;147(1):58-65 [PMID: 19729212]
  64. Phys Med Rehabil Clin N Am. 2015 May;26(2):201-18 [PMID: 25952061]
  65. Eur Rev Med Pharmacol Sci. 2014 Nov;18(22):3425-34 [PMID: 25491618]
  66. J Pain. 2008 May;9(5):463-72 [PMID: 18359667]
  67. J Pain. 2006 Jan;7(1):43-8 [PMID: 16414554]
  68. Eur J Neurosci. 1996 Oct;8(10):2204-8 [PMID: 8921312]
  69. J Neurosci. 2004 Sep 22;24(38):8310-21 [PMID: 15385614]
  70. Pain. 2016 Aug;157(8):1773-82 [PMID: 27075428]
  71. Pain. 2018 May;159(5):864-875 [PMID: 29447132]
  72. Biopolymers. 2005;80(2-3):319-24 [PMID: 15795927]
  73. Biochim Biophys Acta. 2013 May;1832(5):636-49 [PMID: 23376589]
  74. J Neurosci. 2002 Oct 15;22(20):9086-98 [PMID: 12388616]
  75. Trends Neurosci. 2003 Dec;26(12):696-705 [PMID: 14624855]
  76. Prog Mol Biol Transl Sci. 2015;131:409-34 [PMID: 25744681]
  77. Neuroscience. 2002;115(1):15-30 [PMID: 12401318]
  78. J Neurosci. 2015 Jan 14;35(2):495-507 [PMID: 25589745]
  79. Eur J Neurosci. 2004 Jul;20(2):474-82 [PMID: 15233756]
  80. Neuroscience. 2016 Dec 3;338:160-182 [PMID: 27346146]
  81. Pain. 2017 Jul;158(7):1204-1216 [PMID: 28306605]
  82. Pain. 2005 Jan;113(1-2):185-90 [PMID: 15621379]
  83. Brain Res Mol Brain Res. 2001 Nov 1;95(1-2):18-26 [PMID: 11687273]
  84. Neuroscience. 1989;32(3):577-80 [PMID: 2557557]
  85. Front Genet. 2018 Oct 24;9:470 [PMID: 30459806]
  86. Neurosci Lett. 1998 Aug 14;252(2):107-10 [PMID: 9756333]
  87. J Neurophysiol. 2003 Sep;90(3):1680-8 [PMID: 12750418]
  88. J Neurosci. 2011 Jul 13;31(28):10119-27 [PMID: 21752988]
  89. J Pharmacol Toxicol Methods. 1994 Dec;32(4):197-200 [PMID: 7881133]
  90. Can J Anaesth. 2014 Feb;61(2):123-30 [PMID: 24185829]
  91. Neuroscience. 2017 Mar 6;344:394-405 [PMID: 28040566]
  92. Trends Neurosci. 2009 Dec;32(12):611-8 [PMID: 19781793]

Grants

  1. R01 NS084545/NINDS NIH HHS

MeSH Term

Analgesics, Opioid
Animals
Deoxyadenosines
Dinoprostone
Fentanyl
Hyperalgesia
Lectins
Male
Mitogen-Activated Protein Kinases
Morphine
Neuronal Plasticity
Nociceptors
Pain Threshold
Patch-Clamp Techniques
Rats
Rats, Sprague-Dawley
Receptors, Opioid, mu
src-Family Kinases

Chemicals

Analgesics, Opioid
Deoxyadenosines
Lectins
Receptors, Opioid, mu
Morphine
src-Family Kinases
Mitogen-Activated Protein Kinases
cordycepin
Dinoprostone
Fentanyl

Word Cloud

Created with Highcharts 10.0.0primingOIHPTyperatsPGEneuronsnociceptorfentanylIB4+IIculturednmIB4-nociceptorshyperalgesicneuroplasticitypainchronificationmodelattenuatedDRGsensitizingeffectweaklyisolectinB4enhancedsensitizationproduceestablishedopioid-inducedadministrationprostaglandinEhyperalgesiareversesinhibitorsdorsalrootganglionconcentration10IB4IB4-negativestronglyIB4-positive100mechanismunderlyingopioidobservedClinicalµ-opioidreceptorMORagonistsformmaladaptiveresultingmaleidentifypopulationsinvolvedmaintenancemechanismsinducedsystemicconfirmedprolongationIntrathecalcordycepincombinationSrcmitogen-activatedproteinkinaseMAPKpartiallyParallelexperimentsperformedsmall-diameter<30µmfentanyl-primedtreatedagentsreverseEnhancementlowanothercharacteristicfeaturemeasuredreductionactionpotentialAPrheobasefound-positiveresponsehigherwhosereversedThusinducespersistspropertiesremainselucidatedCommonlyusedclinicalanalgesicsmorphinecanuncoverpopulationmediatingelucidatecellularlevelprimedrobustpopulation-specificchangescomparednaivePGE-induceddifferencesidentifiednon-peptidergic[strongly-positive]peptidergic[weakly]Opioid-InducedHyperalgesicPrimingSingleNociceptorsexcitability

Similar Articles

Cited By