Systems biology informed deep learning for inferring parameters and hidden dynamics.

Alireza Yazdani, Lu Lu, Maziar Raissi, George Em Karniadakis
Author Information
  1. Alireza Yazdani: Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA. ORCID
  2. Lu Lu: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. ORCID
  3. Maziar Raissi: Department of Applied Mathematics, University of Colorado, Boulder, Colorado, USA. ORCID
  4. George Em Karniadakis: Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA. ORCID

Abstract

Mathematical models of biological reactions at the system-level lead to a set of ordinary differential equations with many unknown parameters that need to be inferred using relatively few experimental measurements. Having a reliable and robust algorithm for parameter inference and prediction of the hidden dynamics has been one of the core subjects in systems biology, and is the focus of this study. We have developed a new systems-biology-informed deep learning algorithm that incorporates the system of ordinary differential equations into the neural networks. Enforcing these equations effectively adds constraints to the optimization procedure that manifests itself as an imposed structure on the observational data. Using few scattered and noisy measurements, we are able to infer the dynamics of unobserved species, external forcing, and the unknown model parameters. We have successfully tested the algorithm for three different benchmark problems.

References

  1. Chaos. 2023 Jul 1;33(7): [PMID: 37486667]
  2. Inverse Probl. 2019;35(9): [PMID: 33223593]
  3. PLoS Comput Biol. 2007 Oct;3(10):1871-78 [PMID: 17922568]
  4. Genome Res. 2003 Nov;13(11):2467-74 [PMID: 14559783]
  5. PLoS Comput Biol. 2017 Apr 27;13(4):e1005232 [PMID: 28448498]
  6. PLoS One. 2011;6(11):e27755 [PMID: 22132135]
  7. Brief Bioinform. 2007 Mar;8(2):109-16 [PMID: 17430978]
  8. Bioinformatics. 2019 Aug 15;35(16):2873-2874 [PMID: 30601937]
  9. Syst Biol (Stevenage). 2006 Nov;153(6):425-32 [PMID: 17186704]
  10. Science. 2009 Apr 3;324(5923):81-5 [PMID: 19342586]
  11. Metab Eng. 2006 Sep;8(5):447-55 [PMID: 16793301]
  12. BMC Syst Biol. 2017 May 5;11(1):54 [PMID: 28476119]
  13. Bioinformatics. 2019 Mar 1;35(5):830-838 [PMID: 30816929]
  14. PLoS Comput Biol. 2010 Mar 05;6(3):e1000696 [PMID: 20221262]
  15. Biophys Chem. 2003 Nov 1;106(2):179-92 [PMID: 14556906]
  16. Bioinformatics. 2007 Dec 1;23(23):3209-16 [PMID: 18042557]
  17. Sci Rep. 2016 Feb 11;6:20772 [PMID: 26865316]
  18. Science. 2002 Mar 1;295(5560):1662-4 [PMID: 11872829]
  19. Am J Physiol. 1991 May;260(5 Pt 1):E801-9 [PMID: 2035636]
  20. Bioinformatics. 1998;14(10):869-83 [PMID: 9927716]
  21. IET Syst Biol. 2008 Jul;2(4):163-72 [PMID: 18681746]
  22. PLoS One. 2015 Mar 25;10(3):e0119821 [PMID: 25806510]
  23. IET Syst Biol. 2009 Jul;3(4):239-254 [PMID: 19640163]
  24. J R Soc Interface. 2019 Jul 26;16(156):20190043 [PMID: 31266417]
  25. J R Soc Interface. 2017 Jun;14(131): [PMID: 28615495]
  26. Biosystems. 2006 Feb-Mar;83(2-3):248-65 [PMID: 16236429]
  27. Bioinformatics. 2009 Aug 1;25(15):1923-9 [PMID: 19505944]

Grants

  1. U01 HL142518/NHLBI NIH HHS

MeSH Term

Algorithms
Deep Learning
Models, Biological
Systems Biology

Word Cloud

Created with Highcharts 10.0.0equationsparametersalgorithmdynamicsordinarydifferentialunknownmeasurementshiddenbiologydeeplearningMathematicalmodelsbiologicalreactionssystem-levelleadsetmanyneedinferredusingrelativelyexperimentalreliablerobustparameterinferencepredictiononecoresubjectssystemsfocusstudydevelopednewsystems-biology-informedincorporatessystemneuralnetworksEnforcingeffectivelyaddsconstraintsoptimizationproceduremanifestsimposedstructureobservationaldataUsingscatterednoisyableinferunobservedspeciesexternalforcingmodelsuccessfullytestedthreedifferentbenchmarkproblemsSystemsinformedinferring

Similar Articles

Cited By