Synthesis of Carboxy-Dimethylmaleic Amide Linked Polymer Conjugate Based Ultra-pH-sensitive Nanoparticles for Enhanced Antitumor Immunotherapy.

Shuyao Lang, Zibin Tan, Xuanjun Wu, Xuefei Huang
Author Information
  1. Shuyao Lang: Department of Chemistry and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States.
  2. Zibin Tan: Department of Chemistry and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States.
  3. Xuanjun Wu: Department of Chemistry and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States. ORCID
  4. Xuefei Huang: Department of Chemistry, Institute for Quantitative Health Science and Engineering, and Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States. ORCID

Abstract

Cytotoxic T lymphocytes (CTLs) are an important tool for anticancer immunotherapy. To elicit powerful CTL activities, ultra-pH-sensitive nanoparticles (NPs) based on methoxy poly(ethylene glycol)--[poly(diisopropylamino)ethyl methacrylate] have been synthesized as a vaccine delivery platform. A representative CTL epitope, ovalbumin (OVA) peptide antigen, was covalently conjugated to the polymer backbone through an acid responsive carboxy-dimethylmaleic amide linker (CDM) resulting in polymer P-CDM-OVA. Interestingly, while the P-CDM-OVA released OVA peptide slowly in a pH 6.4 buffer, the addition of bovine serum albumin (BSA) mimicking proteins encountered in a cellular and/or environment significantly accelerated the release process. Successful cell surface presentation of OVA was observed when P-CDM-OVA based ultra-pH-sensitive particles were incubated with antigen presenting cells. These P-CDM-OVA NPs greatly enhanced CTL responses compared to the free peptide or the previously reported acetalated dextran particles encapsulating OVA. The P-CDM was also investigated for adjuvant conjugation, and the coadministration of P-CDM-OVA and the P-CDM-adjuvant conjugate NPs further improved CTL responses and effectively reduced tumor growth in mice. Thus, the CDM linked polymer presents a promising platform for anticancer immunotherapy.

References

  1. Acc Chem Res. 2018 Nov 20;51(11):2848-2856 [PMID: 30346728]
  2. J Control Release. 2017 Apr 10;251:92-100 [PMID: 28257987]
  3. ACS Appl Mater Interfaces. 2018 Sep 19;10(37):30983-30993 [PMID: 30136844]
  4. Cancer Metastasis Rev. 2011 Mar;30(1):125-40 [PMID: 21249424]
  5. Oncoimmunology. 2015 Aug 12;5(1):e1068493 [PMID: 26942088]
  6. Acc Chem Res. 2020 Oct 20;53(10):2044-2054 [PMID: 32877161]
  7. Angew Chem Int Ed Engl. 2011 Jun 27;50(27):6109-14 [PMID: 21495146]
  8. Nat Mater. 2014 Feb;13(2):204-12 [PMID: 24317187]
  9. Biotechnol Adv. 2014 Jul-Aug;32(4):789-803 [PMID: 23933109]
  10. Nanoscale. 2020 Mar 14;12(10):5746-5763 [PMID: 32124894]
  11. J Clin Invest. 2019 Mar 1;129(3):1278-1294 [PMID: 30628894]
  12. J Am Chem Soc. 2012 May 9;134(18):7803-11 [PMID: 22524413]
  13. Mol Oncol. 2015 Dec;9(10):1966-81 [PMID: 26632446]
  14. Vaccines (Basel). 2015 Aug 27;3(3):662-85 [PMID: 26350600]
  15. J Am Chem Soc. 2014 Aug 6;136(31):11085-92 [PMID: 25020134]
  16. J Control Release. 2018 Mar 10;273:147-159 [PMID: 29407676]
  17. Nat Biotechnol. 2015 Nov;33(11):1201-10 [PMID: 26501954]
  18. Asian J Pharm Sci. 2020 Sep;15(5):576-590 [PMID: 33193861]
  19. Front Immunol. 2019 Jan 07;9:3098 [PMID: 30666258]
  20. Vaccine. 2011 Jan 29;29(5):1045-52 [PMID: 21129393]
  21. Nature. 2011 Feb 24;470(7335):543-7 [PMID: 21350488]
  22. Methods. 2013 Jun 1;61(2):105-9 [PMID: 23454288]
  23. J Clin Invest. 2016 Mar 1;126(3):799-808 [PMID: 26928033]
  24. Nat Rev Cancer. 2016 Apr;16(4):219-33 [PMID: 26965076]
  25. Cancer Treat Rev. 2015 Dec;41(10):868-76 [PMID: 26589760]
  26. J Mater Chem B. 2020 Mar 4;8(9):1823-1840 [PMID: 32067013]
  27. PLoS One. 2008 Sep 19;3(9):e3247 [PMID: 18802471]
  28. Cancer Immunol Immunother. 2017 Apr;66(4):451-460 [PMID: 28011995]
  29. Nat Nanotechnol. 2017 Jul;12(7):648-654 [PMID: 28436963]
  30. Annu Rev Immunol. 1998;16:323-58 [PMID: 9597133]
  31. Curr Opin Immunol. 2016 Apr;39:1-6 [PMID: 26609943]
  32. Nat Rev Cancer. 2012 Mar 22;12(4):252-64 [PMID: 22437870]
  33. Pharmaceutics. 2018 Aug 22;10(3): [PMID: 30131473]
  34. Adv Ther (Weinh). 2020 Aug 02;:2000129 [PMID: 32838028]
  35. Semin Cancer Biol. 2006 Feb;16(1):3-15 [PMID: 16153857]
  36. J Clin Invest. 2015 Jun;125(6):2532-46 [PMID: 25938786]
  37. Vaccine. 2014 May 19;32(24):2882-95 [PMID: 24593999]
  38. Science. 2018 Mar 23;359(6382):1350-1355 [PMID: 29567705]
  39. Sci Transl Med. 2016 Apr 13;8(334):334ps9 [PMID: 27075624]
  40. J Am Chem Soc. 2013 Feb 13;135(6):2044-7 [PMID: 23331082]

Grants

  1. R01 CA225105/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0P-CDM-OVACTLOVANPspeptidepolymeranticancerimmunotherapyultra-pH-sensitivebasedplatformantigenCDMparticlesresponsesCytotoxicTlymphocytesCTLsimportanttoolelicitpowerfulactivitiesnanoparticlesmethoxypolyethyleneglycol--[polydiisopropylaminoethylmethacrylate]synthesizedvaccinedeliveryrepresentativeepitopeovalbumincovalentlyconjugatedbackboneacidresponsivecarboxy-dimethylmaleicamidelinkerresultingInterestinglyreleasedslowlypH64bufferadditionbovineserumalbuminBSAmimickingproteinsencounteredcellularand/orenvironmentsignificantlyacceleratedreleaseprocessSuccessfulcellsurfacepresentationobservedincubatedpresentingcellsgreatlyenhancedcomparedfreepreviouslyreportedacetalateddextranencapsulatingP-CDMalsoinvestigatedadjuvantconjugationcoadministrationP-CDM-adjuvantconjugateimprovedeffectivelyreducedtumorgrowthmiceThuslinkedpresentspromisingSynthesisCarboxy-DimethylmaleicAmideLinkedPolymerConjugateBasedUltra-pH-sensitiveNanoparticlesEnhancedAntitumorImmunotherapy

Similar Articles

Cited By