ATP13A2-mediated endo-lysosomal polyamine export counters mitochondrial oxidative stress.

Stephanie Vrijsen, Laura Besora-Casals, Sarah van Veen, Jeffrey Zielich, Chris Van den Haute, Norin Nabil Hamouda, Christian Fischer, Bart Ghesquière, Ivailo Tournev, Patrizia Agostinis, Veerle Baekelandt, Jan Eggermont, Eric Lambie, Shaun Martin, Peter Vangheluwe
Author Information
  1. Stephanie Vrijsen: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium. ORCID
  2. Laura Besora-Casals: Cell and Developmental Biology, Department Biology II, Ludwig Maximilians Universität, 80539 Münich, Germany. ORCID
  3. Sarah van Veen: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium. ORCID
  4. Jeffrey Zielich: Cell and Developmental Biology, Department Biology II, Ludwig Maximilians Universität, 80539 Münich, Germany. ORCID
  5. Chris Van den Haute: Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.
  6. Norin Nabil Hamouda: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium.
  7. Christian Fischer: Cell and Developmental Biology, Department Biology II, Ludwig Maximilians Universität, 80539 Münich, Germany.
  8. Bart Ghesquière: Metabolomics Expertise Center, Vlaams Instituut voor Biotechnologie (VIB)-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium. ORCID
  9. Ivailo Tournev: Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria.
  10. Patrizia Agostinis: Laboratory of Cell Death Research and Therapy, VIB-KU Leuven Center for Cancer Biology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
  11. Veerle Baekelandt: Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.
  12. Jan Eggermont: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium. ORCID
  13. Eric Lambie: Cell and Developmental Biology, Department Biology II, Ludwig Maximilians Universität, 80539 Münich, Germany. ORCID
  14. Shaun Martin: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium.
  15. Peter Vangheluwe: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium; peter.vangheluwe@kuleuven.be. ORCID

Abstract

Recessive loss-of-function mutations in () are associated with a spectrum of neurodegenerative disorders, including Parkinson's disease (PD). We recently revealed that the late endo-lysosomal transporter ATP13A2 pumps polyamines like spermine into the cytosol, whereas ATP13A2 dysfunction causes lysosomal polyamine accumulation and rupture. Here, we investigate how ATP13A2 provides protection against mitochondrial toxins such as Rotenone, an environmental PD risk factor. Rotenone promoted mitochondrial-generated superoxide (MitoROS), which was exacerbated by ATP13A2 deficiency in SH-SY5Y cells and patient-derived fibroblasts, disturbing mitochondrial functionality and inducing toxicity and cell death. Moreover, ATP13A2 knockdown induced an ATF4-CHOP-dependent stress response following Rotenone exposure. MitoROS and ATF4-CHOP were blocked by MitoTEMPO, a mitochondrial antioxidant, suggesting that the impact of ATP13A2 on MitoROS may relate to the antioxidant properties of spermine. Pharmacological inhibition of intracellular polyamine synthesis with α-difluoromethylornithine (DFMO) also increased MitoROS and ATF4 when ATP13A2 was deficient. The polyamine transport activity of ATP13A2 was required for lowering Rotenone/DFMO-induced MitoROS, whereas exogenous spermine quenched Rotenone-induced MitoROS via ATP13A2. Interestingly, fluorescently labeled spermine uptake in the mitochondria dropped as a consequence of ATP13A2 transport deficiency. Our cellular observations were recapitulated in vivo, in a strain deficient in the ATP13A2 ortholog These animals exhibited a basal elevated MitoROS level, mitochondrial dysfunction, and enhanced stress response regulated by , the ortholog of ATF4, causing hypersensitivity to Rotenone, which was reversible with MitoTEMPO. Together, our study reveals a conserved cell protective pathway that counters mitochondrial oxidative stress via ATP13A2-mediated lysosomal spermine export.

Keywords

References

  1. J Biol Chem. 1992 Sep 15;267(26):18393-7 [PMID: 1526979]
  2. Anim Nutr. 2017 Mar;3(1):85-90 [PMID: 29767047]
  3. Nat Rev Dis Primers. 2017 Mar 23;3:17013 [PMID: 28332488]
  4. J Biol Chem. 2003 Mar 7;278(10):8516-25 [PMID: 12496265]
  5. Neurology. 2007 May 8;68(19):1557-62 [PMID: 17485642]
  6. Neurobiol Dis. 2012 Mar;45(3):962-72 [PMID: 22198378]
  7. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11140-5 [PMID: 9736703]
  8. Arch Biochem Biophys. 1999 May 15;365(2):231-8 [PMID: 10328817]
  9. Neurotox Res. 2007 Apr;11(3-4):151-67 [PMID: 17449457]
  10. Cell Cycle. 2014;13(24):3903-8 [PMID: 25483063]
  11. FASEB J. 2004 Jul;18(10):1114-6 [PMID: 15132986]
  12. Chembiochem. 2018 May 4;19(9):907-911 [PMID: 29451723]
  13. Biochim Biophys Acta. 2013 Feb;1833(2):410-6 [PMID: 22445420]
  14. Brain Res. 2014 Feb 26;1549:52-62 [PMID: 24418467]
  15. Methods. 2003 Aug;30(4):313-21 [PMID: 12828945]
  16. Aging (Albany NY). 2011 Aug;3(8):716-32 [PMID: 21869457]
  17. Parkinsons Dis. 2016;2016:9531917 [PMID: 27073711]
  18. Hum Mol Genet. 2014 Jun 1;23(11):2816-33 [PMID: 24603074]
  19. J Biol Chem. 2012 Oct 19;287(43):35825-37 [PMID: 22942278]
  20. IUBMB Life. 2014 Jan;66(1):8-18 [PMID: 24395705]
  21. J Neurosci. 2016 Jan 27;36(4):1086-95 [PMID: 26818499]
  22. Oxid Med Cell Longev. 2019 May 14;2019:5406468 [PMID: 31217839]
  23. Amino Acids. 2009 Mar;36(3):449-56 [PMID: 18500430]
  24. React Oxyg Species (Apex). 2016;2(5):361-370 [PMID: 29721549]
  25. J Neurosci. 2014 Nov 12;34(46):15281-7 [PMID: 25392495]
  26. Nat Genet. 2006 Oct;38(10):1184-91 [PMID: 16964263]
  27. Neurosci Lett. 2016 Aug 3;627:36-41 [PMID: 27233218]
  28. Amino Acids. 2007 Aug;33(2):231-40 [PMID: 17396215]
  29. Neurochem Int. 2013 Apr;62(5):575-94 [PMID: 23266600]
  30. Nucleic Acids Res. 2017 Jan 4;45(D1):D369-D379 [PMID: 27980099]
  31. J Neurosci. 2013 Feb 6;33(6):2398-407 [PMID: 23392669]
  32. Neurobiol Aging. 2012 Aug;33(8):1843.e1-7 [PMID: 22296644]
  33. Methods Mol Biol. 2010;594:57-72 [PMID: 20072909]
  34. Parkinsonism Relat Disord. 2011 Feb;17(2):135-8 [PMID: 21094623]
  35. Free Radic Biol Med. 2006 Oct 15;41(8):1272-81 [PMID: 17015174]
  36. PLoS One. 2013 Oct 09;8(10):e77202 [PMID: 24130856]
  37. PLoS One. 2018 Mar 16;13(3):e0194451 [PMID: 29547664]
  38. J Cell Sci. 2004 Aug 15;117(Pt 18):4055-66 [PMID: 15280428]
  39. J Biol Chem. 2000 Dec 8;275(49):38581-8 [PMID: 10969076]
  40. Hum Mol Genet. 2017 May 1;26(9):1656-1669 [PMID: 28334751]
  41. J Biol Chem. 2016 Jul 15;291(29):14904-12 [PMID: 27268251]
  42. Genetics. 1974 May;77(1):71-94 [PMID: 4366476]
  43. Nature. 2020 Mar;579(7799):427-432 [PMID: 32132707]
  44. FASEB J. 2010 Jan;24(1):206-17 [PMID: 19762559]
  45. Oxid Med Cell Longev. 2017;2017:2525967 [PMID: 28785371]
  46. Neurology. 2008 Nov 18;71(21):1727-32 [PMID: 19015489]
  47. Gene. 2001 Jan 24;263(1-2):103-12 [PMID: 11223248]
  48. Autophagy. 2016;12(3):472-83 [PMID: 26761717]
  49. J Neurosci. 2010 Dec 15;30(50):16938-48 [PMID: 21159964]
  50. Front Neuroanat. 2015 Jul 08;9:91 [PMID: 26217195]
  51. Free Radic Biol Med. 1991;11(5):455-61 [PMID: 1663062]
  52. Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9611-6 [PMID: 22647602]
  53. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9040-5 [PMID: 26134396]
  54. Hum Mol Genet. 2014 Jun 1;23(11):2802-15 [PMID: 24399444]
  55. J Neurochem. 2018 Nov;147(3):291-309 [PMID: 29804302]
  56. Biochim Biophys Acta. 1991 Jan 23;1073(1):200-2 [PMID: 1991136]
  57. Hum Mol Genet. 2012 Jun 15;21(12):2646-50 [PMID: 22388936]
  58. J Clin Biochem Nutr. 2019 Jan;64(1):1-12 [PMID: 30705506]
  59. Biomed Chromatogr. 2008 Jan;22(1):73-80 [PMID: 17668437]
  60. J Neurochem. 2012 Jul;122(2):251-9 [PMID: 22288903]
  61. Brain. 2017 Feb;140(2):287-305 [PMID: 28137957]
  62. Nature. 2020 Feb;578(7795):419-424 [PMID: 31996848]
  63. Neurochem Int. 2012 Feb;60(3):243-8 [PMID: 22265822]
  64. J Cell Biol. 2017 Jul 3;216(7):2027-2045 [PMID: 28566324]
  65. iScience. 2020 Sep 29;23(10):101601 [PMID: 33083756]
  66. Hum Genomics. 2019 Apr 16;13(1):19 [PMID: 30992063]
  67. J Physiol. 2005 Mar 15;563(Pt 3):713-24 [PMID: 15668212]
  68. Mol Med Rep. 2017 Sep;16(3):3619-3626 [PMID: 28765886]
  69. Nat Commun. 2016 Jun 09;7:11803 [PMID: 27278822]
  70. Environ Health Perspect. 2011 Jun;119(6):866-72 [PMID: 21269927]
  71. Nat Genet. 2009 Mar;41(3):308-15 [PMID: 19182805]
  72. Trends Endocrinol Metab. 2017 Nov;28(11):794-806 [PMID: 28797581]
  73. Nature. 2020 Mar;579(7799):433-437 [PMID: 32132706]
  74. J Pediatr Gastroenterol Nutr. 2005 Oct;41(4):460-5 [PMID: 16205515]
  75. J Biol Chem. 2005 Dec 30;280(52):42801-8 [PMID: 16263714]

Grants

  1. P40 OD010440/NIH HHS

MeSH Term

Activating Transcription Factor 4
Adenosine Triphosphatases
Animals
Caenorhabditis elegans
Caenorhabditis elegans Proteins
Eflornithine
Fibroblasts
Lysosomes
Mitochondria
Mutation
Oxidative Stress
Parkinson Disease
Polyamines
Proton-Translocating ATPases
Rotenone
Spermine
Transcription Factor CHOP
Transcription Factors

Chemicals

ATF4 protein, human
ATFS-1 protein, C elegans
ATP13A2 protein, human
Caenorhabditis elegans Proteins
DDIT3 protein, human
Polyamines
Transcription Factors
Rotenone
Activating Transcription Factor 4
Transcription Factor CHOP
Spermine
Adenosine Triphosphatases
CATP-6 protein, C elegans
Proton-Translocating ATPases
Eflornithine

Word Cloud

Created with Highcharts 10.0.0ATP13A2MitoROSmitochondrialsperminepolyaminestressrotenoneantioxidanttransportPDendo-lysosomalwhereasdysfunctionlysosomaldeficiencycellresponseMitoTEMPOATF4deficientviamitochondriaorthologcountersoxidativeATP13A2-mediatedexportRecessiveloss-of-functionmutationsassociatedspectrumneurodegenerativedisordersincludingParkinson'sdiseaserecentlyrevealedlatetransporterpumpspolyamineslikecytosolcausesaccumulationruptureinvestigateprovidesprotectiontoxinsenvironmentalriskfactorRotenonepromotedmitochondrial-generatedsuperoxideexacerbatedSH-SY5Ycellspatient-derivedfibroblastsdisturbingfunctionalityinducingtoxicitydeathMoreoverknockdowninducedATF4-CHOP-dependentfollowingexposureATF4-CHOPblockedsuggestingimpactmayrelatepropertiesPharmacologicalinhibitionintracellularsynthesisα-difluoromethylornithineDFMOalsoincreasedactivityrequiredloweringrotenone/DFMO-inducedexogenousquenchedrotenone-inducedInterestinglyfluorescentlylabeleduptakedroppedconsequencecellularobservationsrecapitulatedvivostrainanimalsexhibitedbasalelevatedlevelenhancedregulatedcausinghypersensitivityreversibleTogetherstudyrevealsconservedprotectivepathwayP5B-typeATPaseneurodegeneration

Similar Articles

Cited By (43)