Histological quantification of decomposed human livers: a potential aid for estimation of the post-mortem interval?

Ann-Sofie Ceciliason, M Gunnar Andersson, Sofia Nyberg, Håkan Sandler
Author Information
  1. Ann-Sofie Ceciliason: Forensic Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, SE-751 85, Uppsala, Sweden. ann-sofie.ceciliason@surgsci.uu.se. ORCID
  2. M Gunnar Andersson: Department of Chemistry, Environment and Feed Hygiene, The National Veterinary Institute, SE-751 89, Uppsala, Sweden. ORCID
  3. Sofia Nyberg: Department of Forensic Medicine, The National Board of Forensic Medicine, Box 1024, SE-751 40, Uppsala, Sweden.
  4. Håkan Sandler: Forensic Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, SE-751 85, Uppsala, Sweden.

Abstract

The objective of this study was to determine if a novel scoring-based model for histological quantification of decomposed human livers could improve the precision of post-mortem interval (PMI) estimation for bodies from an indoor setting. The hepatic decomposition score (HDS) system created consists of five liver scores (HDS markers): cell nuclei and cell structure of hepatocytes, bile ducts, portal triad, and architecture. A total of 236 forensic autopsy cases were divided into a training dataset (n = 158) and a validation dataset (n = 78). All cases were also scored using the total body score (TBS) method. We specified a stochastic relationship between the log-transformed accumulated degree-days (logADD) and the taphonomic findings, using a multivariate regression model to compute the likelihood function. Three models were applied, based on (i) five HDS markers, (ii) three partial body scores (head, trunk, limbs), or (iii) a combination of the two. The predicted logADD was compared with the true logADD for each case. The fitted models performed equally well in the training dataset and the validation dataset. The model comprising both scoring methods had somewhat better precision than either method separately. Our results indicated that the HDS system was statistically robust. Combining the HDS markers with the partial body scores resulted in a better representation of the decomposition process and might improve PMI estimation of decomposed human remains.

Keywords

References

  1. Ceciliason AS, Andersson MG, Lindström A, Sandler H (2018) Quantifying human decomposition in an indoor setting and implications for postmortem interval estimation. Forensic Sci Int 283:180–189. https://doi.org/10.1016/j.forsciint.2017.12.026 [DOI: 10.1016/j.forsciint.2017.12.026]
  2. Hayman J, Oxenham M (2016) Peri-mortem disease treatment: a little known cause of error in the estimation of the time sine death in decomposing human remains. Aust J Forensic Sci 48:171–185. https://doi.org/10.1080/00450618.2015.1042048 [DOI: 10.1080/00450618.2015.1042048]
  3. Campobasso CP, Di Vella G, Introna F (2001) Factors affecting decomposition and Diptera colonization. Forensic Sci Int 120:18–27 [DOI: 10.1016/S0379-0738(01)00411-X]
  4. Zhou C, Byard RW (2011) Factors and processes causing accelerated decomposition in human cadavers – an overview. J Forensic Legal Med 18:6–9. https://doi.org/10.1016/j.jflm.2010.10.003 [DOI: 10.1016/j.jflm.2010.10.003]
  5. Tsokos M (2004) Postmortem changes and artefacts occurring during the early postmortem interval. In: Forensic pathology reviews, 3rd edn. Humana Press Inc, Totowa, pp 183–238 [DOI: 10.1007/978-1-59259-786-4]
  6. Pinheiro J (2006) Decay process of a cadaver. In: Schmitt A, Cunha E, Pinheiro J (eds) Forensic anthropology and medicine: complementary sciences from recovery to cause of death. Humana Press Inc, Totowa, NJ, pp 85–116 [DOI: 10.1007/978-1-59745-099-7_5]
  7. Hinson JA, Roberts DW, James LP (2010) Mechanisms of acetaminophen-induced liver necrosis. In: Uetrecht J (ed) Adverse drug reactions, vol 196. Springer, Berlin, pp 369–405 [DOI: 10.1007/978-3-642-00663-0_12]
  8. Megyesi MS, Nawrocki SP, Haskell NH (2005) Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J Forensic Sci 50:618–626 [DOI: 10.1520/JFS2004017]
  9. Javan GT, Finley SJ, Tuomisto S, Hall A, Benbow ME, Mills D (2019) An interdisciplinary review of the thanatomicrobiome in human decomposition. Forensic Sci Med Pathol 15:75–83. https://doi.org/10.1007/s12024-018-0061-0 [DOI: 10.1007/s12024-018-0061-0]
  10. Kushwaha V, Yadav M, Srivastava AK, Agarwal A (2009) Time passed since death from degenerative changes in liver. J Indian Acad Forensic Med 31:320–325
  11. Karadžić R, Ilić G, Antović A, Banović LK (2010) Autolytic ultrastructural changes in rat and human hepatocytes. Rom J Leg Med 18:246–252. https://doi.org/10.4323/rjlm.2010.247 [DOI: 10.4323/rjlm.2010.247]
  12. Verma S, Goyal M, Kurrey P, Paikra L (2015) Estimation of time since death from histological changes in hepatic cords and hepatic lobules of human liver. Int J Curr Res Life Sci 4:363–366
  13. Madea B (2016) Methods for determining time of death. Forensic Sci Med Pathol 12:451–485. https://doi.org/10.1007/s12024-016-9776-y [DOI: 10.1007/s12024-016-9776-y]
  14. Mann RW, Bass WM, Meadows L (1990) Time since death and decomposition of the human body: variables and observations in case and experimental field studies. J Forensic Sci 35(1):103–111 [DOI: 10.1520/JFS12806J]
  15. Heaton V, Lagden A, Moffatt C, Simmons T (2010) Predicting the postmortem submersion interval for human remains recovered from UK waterways. Forensic Sci 55(2):302–307 [DOI: 10.1111/j.1556-4029.2009.01291.x]
  16. Gruentahl A, Moffatt C, Simmons T (2012) Differential decomposition patterns in charred versus un-charred remains. J Forensic Sci 57(1):12–18 [DOI: 10.1111/j.1556-4029.2011.01909.x]
  17. Lefkowitch JH (2015) Scheuer’s liver biopsy interpretation, 9 revised edition. Elsevier Health Sciences, London
  18. Moffatt C, Simmons T, Lynch-Aird J (2016) An improved equation for TBS and ADD: establishing a reliable postmortem interval framework for casework and experimental studies. J Forensic Sci 61:201–207. https://doi.org/10.1111/1556-4029.12931 [DOI: 10.1111/1556-4029.12931]
  19. Folkhälsomyndighetens allmänna råd om temperatur inomhus (FoHMFS 2014:17). [The Public Health Agency of Sweden’s general advice on indoor temperature]
  20. Bédard M, Martin NJ, Krueger P, Brazil K (2000) Assessing reproducibility of data obtained with instruments based on continuous measurements. Exp Aging Res 26(4):353–365 [DOI: 10.1080/036107300750015741]
  21. Popović ZB, Thomas JD (2017) Assessing observer variability: a user’s guide. Cardiovasc Dagn Ther 7(3):317–324. https://doi.org/10.21037/cdt.2017.03.12 [DOI: 10.21037/cdt.2017.03.12]
  22. Andersson MG, Ceciliason AS, Sandler H, Mostad P (2019) Application of the Bayesian framework for forensic interpretation to casework involving postmortem interval estimates of decomposed human remains. Forensic Sci Int 301:402–414. https://doi.org/10.1016/j.forsciint.2019.05.050 [DOI: 10.1016/j.forsciint.2019.05.050]
  23. Madea B, Ortmann J, Doberentz E (2019) Estimation of the time since death – even methods with a low precision may be helpful in forensic casework. Forensic Sci Int 302:109879. https://doi.org/10.1016/j.forsciint.2019.109879 [DOI: 10.1016/j.forsciint.2019.109879]
  24. Cocariu EA, Mageriu V, Staniceanu F, Bastian A, Socoliuc C, Zurac S (2016) Correlation between the autolytic changes and postmortem interval in refrigerated cadavers. Rom J Intern Med 54:105–122. https://doi.org/10.1515/rjim-2016-0012 [DOI: 10.1515/rjim-2016-0012]
  25. Vass AA, Bass WM, Wolt JD, Foss JE, Ammons JT (1992) Time since death determinations of human cadavers using soil solution. J Forensic Sci 37(5):1236–1253 [DOI: 10.1520/JFS13311J]
  26. Micozzi MS (1986) Experimental study of postmortem change under field conditions: effects of freezing, thawing, and mechanical injury. J Forensic Sci 31(3):950–961 [DOI: 10.1520/JFS11103J]
  27. Forbes MNS, Finaughty DA, Miles KL, Gibbon VE (2019) Inaccuracy of accumulated degree day models for estimating terrestrial post-mortem intervals in Cape Town, South Africa. Forensic Sci Int 296:67–73. https://doi.org/10.1016/j.forsciint.2019.01.008 [DOI: 10.1016/j.forsciint.2019.01.008]

MeSH Term

Adult
Aged
Aged, 80 and over
Bile Ducts
Biomarkers
Capillaries
Cell Nucleus
Female
Forensic Pathology
Hepatocytes
Humans
Liver
Male
Middle Aged
Models, Statistical
Postmortem Changes
Reproducibility of Results
Temperature
Young Adult

Chemicals

Biomarkers

Word Cloud

Created with Highcharts 10.0.0HDSestimationscoredatasetbodymodeldecomposedhumandecompositionscoresmarkerslogADDquantificationimproveprecisionpost-mortemintervalPMIsystemfivecelltotalcasestrainingn=validationusingmethodmodelspartialbetterobjectivestudydeterminenovelscoring-basedhistologicalliversbodiesindoorsettinghepaticcreatedconsistsliver:nucleistructurehepatocytesbileductsportaltriadarchitecture236forensicautopsydivided15878alsoscoredTBSspecifiedstochasticrelationshiplog-transformedaccumulateddegree-daystaphonomicfindingsmultivariateregressioncomputelikelihoodfunctionThreeappliedbasediithreeheadtrunklimbsiiicombinationtwopredictedcomparedtruecasefittedperformedequallywellcomprisingscoringmethodssomewhateitherseparatelyresultsindicatedstatisticallyrobustCombiningresultedrepresentationprocessmightremainsHistologicallivers:potentialaidinterval?ForensictaphonomyHepaticPost-mortemTotal

Similar Articles

Cited By