Novel hepaci- and pegi-like viruses in native Australian wildlife and non-human primates.

Ashleigh F Porter, John H-O Pettersson, Wei-Shan Chang, Erin Harvey, Karrie Rose, Mang Shi, John-Sebastian Eden, Jan Buchmann, Craig Moritz, Edward C Holmes
Author Information
  1. Ashleigh F Porter: School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia.
  2. John H-O Pettersson: School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia.
  3. Wei-Shan Chang: School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia.
  4. Erin Harvey: School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia.
  5. Karrie Rose: Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman 2088, Australia.
  6. Mang Shi: School of Medicine, Sun Yat-sen University, Guangzhou, China.
  7. John-Sebastian Eden: School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia. ORCID
  8. Jan Buchmann: School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia. ORCID
  9. Craig Moritz: Research School of Biology, Centre for Biodiversity Analysis, Australian National University, Acton, ACT, Australia.
  10. Edward C Holmes: School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia. ORCID

Abstract

The family of positive-sense RNA viruses contains important pathogens of humans and other animals, including Zika virus, dengue virus, and hepatitis C virus. The are currently divided into four genera-, , , and -each with a diverse host range. Members of the genus are associated with an array of animal species, including humans, non-human primates, other mammalian species, as well as birds and fish, while the closely related pegiviruses have been identified in a variety of mammalian taxa, also including humans. Using a combination of total RNA and whole-genome sequencing we identified four novel hepaci-like viruses and one novel variant of a known hepacivirus in five species of Australian wildlife. The hosts infected comprised native Australian marsupials and birds, as well as a native gecko (). From these data we identified a distinct marsupial clade of hepaci-like viruses that also included an engorged tick collected while feeding on Australian long-nosed bandicoots (). Distinct lineages of hepaci-like viruses associated with geckos and birds were also identified. By mining the SRA database we similarly identified three new hepaci-like viruses from avian and primate hosts, as well as two novel pegi-like viruses associated with primates. The phylogenetic history of the hepaci- and pegi-like viruses as a whole, combined with co-phylogenetic analysis, provided support for virus-host co-divergence over the course of vertebrate evolution, although with frequent cross-species virus transmission. Overall, our work highlights the diversity of the and genera as well as the uncertain phylogenetic distinction between.

Keywords

References

  1. Syst Biol. 2007 Aug;56(4):564-77 [PMID: 17654362]
  2. mBio. 2013 Apr 09;4(2):e00216-13 [PMID: 23572554]
  3. Virus Evol. 2015 May 26;1(1):vev003 [PMID: 27774277]
  4. J Virol. 2015 Jun;89(11):5876-82 [PMID: 25787289]
  5. Emerg Infect Dis. 2017 Jan;24(1):22-31 [PMID: 29260677]
  6. J Med Entomol. 1994 Jan;31(1):1-9 [PMID: 8158611]
  7. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  8. Viruses. 2019 Mar 02;11(3): [PMID: 30832350]
  9. J Virol. 2017 Aug 10;91(17): [PMID: 28637756]
  10. Nature. 2016 Dec 22;540(7634):539-543 [PMID: 27880757]
  11. PLoS Pathog. 2017 Feb 8;13(2):e1006215 [PMID: 28178344]
  12. Nature. 2013 Jun 20;498(7454):310-1 [PMID: 23783626]
  13. PLoS One. 2020 Jan 3;15(1):e0227114 [PMID: 31899786]
  14. Annu Rev Virol. 2016 Sep 29;3(1):53-75 [PMID: 27741408]
  15. Emerg Microbes Infect. 2014 Mar;3(3):e21 [PMID: 26038514]
  16. J Gen Virol. 1998 Aug;79 ( Pt 8):1871-7 [PMID: 9714234]
  17. Hepatology. 2015 Feb;61(2):447-59 [PMID: 25212983]
  18. Arch Virol. 2019 Feb;164(2):509-522 [PMID: 30460488]
  19. Nature. 2008 Feb 21;451(7181):990-3 [PMID: 18288193]
  20. Sci Transl Med. 2015 Sep 16;7(305):305ra144 [PMID: 26378244]
  21. Algorithms Mol Biol. 2010 Feb 03;5:16 [PMID: 20181081]
  22. One Health Outlook. 2019 Dec 12;1:5 [PMID: 33829126]
  23. Curr Opin Virol. 2016 Feb;16:1-7 [PMID: 26517843]
  24. J Virol. 2020 Aug 31;94(18): [PMID: 32581107]
  25. Mol Ecol. 2018 Dec;27(24):5263-5278 [PMID: 30375075]
  26. J Virol. 2015 Oct 21;90(2):659-69 [PMID: 26491167]
  27. PLoS Pathog. 2013;9(6):e1003438 [PMID: 23818848]
  28. Virus Evol. 2018 Oct 31;4(2):vey031 [PMID: 30397510]
  29. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  30. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  31. PLoS Pathog. 2010 Jul 01;6:e1000972 [PMID: 20617167]
  32. J Virol. 2019 Mar 5;93(6): [PMID: 30567986]
  33. J Med Virol. 1995 May;46(1):81-90 [PMID: 7623012]
  34. J Virol. 2019 Jan 17;93(3): [PMID: 30404810]
  35. Proc Natl Acad Sci U S A. 2013 May 14;110(20):8194-9 [PMID: 23610427]
  36. J Med Virol. 1998 Sep;56(1):44-51 [PMID: 9700632]
  37. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  38. Nature. 2018 Apr;556(7700):197-202 [PMID: 29618816]
  39. J Virol. 2015 Jul;89(14):7007-15 [PMID: 25926652]
  40. J Virol. 1996 Dec;70(12):9028-30 [PMID: 8971037]
  41. PLoS One. 2014 Jun 11;9(2):e98569 [PMID: 24918769]
  42. Virology. 2019 Sep;535:189-199 [PMID: 31319276]
  43. Methods. 2016 Jun 1;102:3-11 [PMID: 27012178]
  44. Microbiome. 2018 Oct 3;6(1):178 [PMID: 30285857]
  45. Mol Biol Evol. 2017 Jul 1;34(7):1812-1819 [PMID: 28387841]
  46. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  47. Nat Rev Microbiol. 2007 Jun;5(6):453-63 [PMID: 17487147]
  48. J Gen Virol. 2014 Aug;95(Pt 8):1701-1711 [PMID: 24814924]
  49. J Virol. 2012 Jun;86(11):6171-8 [PMID: 22491452]
  50. mBio. 2014 Oct 14;5(5):e01933-14 [PMID: 25316698]
  51. J Virol. 2013 Aug;87(16):8971-81 [PMID: 23740998]
  52. Nat Genet. 2018 Aug;50(8):1102-1111 [PMID: 29967444]
  53. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):E1407-15 [PMID: 23509292]
  54. J Gen Virol. 2019 Aug;100(8):1234-1240 [PMID: 31282853]
  55. Folia Microbiol (Praha). 2006;51(6):665-80 [PMID: 17455808]
  56. Bioinformatics. 2011 Apr 15;27(8):1164-5 [PMID: 21335321]
  57. J Gen Virol. 2011 Feb;92(Pt 2):233-46 [PMID: 21084497]
  58. Genome Biol Evol. 2015 Oct 21;7(11):2996-3008 [PMID: 26494702]
  59. Virology. 1997 Mar 17;229(2):429-36 [PMID: 9126255]
  60. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  61. Diagn Microbiol Infect Dis. 2020 Feb;96(2):114898 [PMID: 31753519]
  62. Viruses. 2019 Mar 24;11(3): [PMID: 30909631]
  63. Sci Rep. 2019 Oct 18;9(1):14953 [PMID: 31628350]
  64. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  65. PeerJ. 2020 Jan 27;8:e7971 [PMID: 32025362]
  66. Nat Med. 1995 Jun;1(6):564-9 [PMID: 7585124]

Word Cloud

Created with Highcharts 10.0.0virusesidentifiedviruswellhepaci-likeAustralianhumansincludingassociatedspeciesprimatesbirdsalsonovelnativepegi-likeRNAfournon-humanmammalianhepaciviruswildlifehostsmarsupialphylogenetichepaci-familypositive-sensecontainsimportantpathogensanimalsZikadenguehepatitisCcurrentlydividedgenera--eachdiversehostrangeMembersgenusarrayanimalfishcloselyrelatedpegivirusesvarietytaxaUsingcombinationtotalwhole-genomesequencingonevariantknownfiveinfectedcomprisedmarsupialsgeckodatadistinctcladeincludedengorgedtickcollectedfeedinglong-nosedbandicootsDistinctlineagesgeckosminingSRAdatabasesimilarlythreenewavianprimatetwohistorywholecombinedco-phylogeneticanalysisprovidedsupportvirus-hostco-divergencecoursevertebrateevolutionalthoughfrequentcross-speciestransmissionOverallworkhighlightsdiversitygenerauncertaindistinctionbetweenNovelmetagenomicspegivirus

Similar Articles

Cited By