Bioenergy sorghum maintains photosynthetic capacity in elevated ozone concentrations.

Shuai Li, Christopher A Moller, Noah G Mitchell, DoKyoung Lee, Elizabeth A Ainsworth
Author Information
  1. Shuai Li: Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. ORCID
  2. Christopher A Moller: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
  3. Noah G Mitchell: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
  4. DoKyoung Lee: Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
  5. Elizabeth A Ainsworth: Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. ORCID

Abstract

Elevated tropospheric ozone concentration (O ) significantly reduces photosynthesis and productivity in several C crops including maize, switchgrass and sugarcane. However, it is unknown how O affects plant growth, development and productivity in sorghum (Sorghum bicolor L.), an emerging C bioenergy crop. Here, we investigated the effects of elevated O on photosynthesis, biomass and nutrient composition of a number of sorghum genotypes over two seasons in the field using free-air concentration enrichment (FACE), and in growth chambers. We also tested if elevated O altered the relationship between stomatal conductance and environmental conditions using two common stomatal conductance models. Sorghum genotypes showed significant variability in plant functional traits, including photosynthetic capacity, leaf N content and specific leaf area, but responded similarly to O . At the FACE experiment, elevated O did not alter net CO assimilation (A), stomatal conductance (g ), stomatal sensitivity to the environment, chlorophyll fluorescence and plant biomass, but led to reductions in the maximum carboxylation capacity of phosphoenolpyruvate and increased stomatal limitation to A in both years. These findings suggest that bioenergy sorghum is tolerant to O and could be used to enhance biomass productivity in O polluted regions.

Keywords

References

  1. Glob Chang Biol. 2018 Aug;24(8):3560-3574 [PMID: 29604158]
  2. Plant Physiol. 2004 Aug;135(4):2348-57 [PMID: 15299126]
  3. Plant Cell Environ. 2017 Dec;40(12):3088-3100 [PMID: 29044553]
  4. Plant Cell Environ. 2021 Mar;44(3):729-746 [PMID: 33245145]
  5. Annu Rev Plant Biol. 2019 Apr 29;70:781-808 [PMID: 31035829]
  6. Plant Physiol. 2006 Feb;140(2):779-90 [PMID: 16407441]
  7. Plant Cell Environ. 2006 Sep;29(9):1794-800 [PMID: 16913868]
  8. J Exp Bot. 2011 May;62(9):3235-46 [PMID: 21398428]
  9. Plant Cell Environ. 2017 Sep;40(9):1984-2003 [PMID: 28623868]
  10. New Phytol. 2006;170(2):333-43 [PMID: 16608458]
  11. Plant Cell Environ. 2020 Dec;43(12):3020-3032 [PMID: 32929764]
  12. Sci Total Environ. 2019 Mar 10;655:1009-1016 [PMID: 30577095]
  13. Curr Opin Biotechnol. 2012 Jun;23(3):323-9 [PMID: 22204822]
  14. PLoS One. 2013 Jun 11;8(6):e66016 [PMID: 23776594]
  15. Trends Plant Sci. 2008 Aug;13(8):415-20 [PMID: 18650120]
  16. Genetics. 2019 Mar;211(3):1075-1087 [PMID: 30622134]
  17. Environ Sci Pollut Res Int. 2014 Feb;21(4):2628-41 [PMID: 24114383]
  18. Environ Pollut. 2016 Aug;215:347-355 [PMID: 27261884]
  19. Annu Rev Plant Biol. 2012;63:637-61 [PMID: 22404461]
  20. Oecologia. 1989 Jan;78(1):9-19 [PMID: 28311896]
  21. Plant Biol (Stuttg). 2007 Jul;9(4):478-88 [PMID: 17401809]
  22. Plant J. 2017 Jun;90(5):886-897 [PMID: 27739639]
  23. Sci Total Environ. 2016 Feb 15;544:853-63 [PMID: 26706758]
  24. New Phytol. 2005 Feb;165(2):351-71 [PMID: 15720649]
  25. Glob Chang Biol. 2020 Jan;26(1):274-286 [PMID: 31642554]
  26. J Exp Bot. 2003 Nov;54(392):2393-401 [PMID: 14512377]
  27. Glob Chang Biol. 2013 Oct;19(10):3155-66 [PMID: 23625780]
  28. Biol Res. 2007;40(2):137-53 [PMID: 18064351]
  29. Science. 2009 Jul 17;325(5938):270-1 [PMID: 19608900]
  30. Plant Physiol. 2008 May;147(1):13-9 [PMID: 18443102]
  31. J Exp Bot. 2014 Jul;65(13):3479-89 [PMID: 24958898]
  32. Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):464-9 [PMID: 18180449]
  33. Environ Pollut. 2010 Aug;158(8):2664-71 [PMID: 20537773]
  34. Curr Opin Plant Biol. 2000 Jun;3(3):229-35 [PMID: 10837263]
  35. Annu Rev Plant Biol. 2004;55:591-628 [PMID: 15377233]
  36. Plant Physiol. 2017 Jan;173(1):614-626 [PMID: 28049858]
  37. Trends Plant Sci. 2008 Aug;13(8):421-9 [PMID: 18632303]
  38. Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14390-5 [PMID: 26578785]
  39. Plant Cell Environ. 2020 Dec;43(12):3033-3047 [PMID: 32844407]
  40. J Exp Bot. 2008;59(13):3741-52 [PMID: 18776183]
  41. Plant Cell Environ. 2018 Jun;41(6):1263-1277 [PMID: 29292838]
  42. Glob Chang Biol. 2018 Oct;24(10):4869-4893 [PMID: 30084165]
  43. Glob Chang Biol. 2018 Dec;24(12):5708-5723 [PMID: 30218538]
  44. Glob Chang Biol. 2019 Dec;25(12):4327-4338 [PMID: 31571358]
  45. Plant Cell Environ. 2017 Sep;40(9):1874-1886 [PMID: 28556410]
  46. Oecologia. 2012 Jul;169(3):651-9 [PMID: 22218943]
  47. Nat Ecol Evol. 2017 Sep;1(9):1292-1298 [PMID: 29046531]
  48. Plant Cell. 2007 Jul;19(7):2091-4 [PMID: 17660357]
  49. J Exp Bot. 2012 Jan;63(2):527-36 [PMID: 22016429]
  50. Plant Physiol. 2021 Nov 3;187(3):1481-1500 [PMID: 34618065]
  51. Plants (Basel). 2019 Apr 02;8(4): [PMID: 30987071]
  52. Environ Pollut. 2012 Jul;166:167-71 [PMID: 22507388]

MeSH Term

Chlorophyll
Ozone
Photosynthesis
Plant Leaves
Plant Transpiration
Sorghum

Chemicals

Chlorophyll
Ozone

Word Cloud

Created with Highcharts 10.0.0OstomatalsorghumelevatedbiomassconductancephotosynthesisproductivityplantcapacityozoneconcentrationCincludinggrowthSorghumbioenergygenotypestwousingFACEphotosyntheticleafchlorophyllfluorescencemodelElevatedtroposphericsignificantlyreducesseveralcropsmaizeswitchgrasssugarcaneHoweverunknownaffectsdevelopmentbicolorLemergingcropinvestigatedeffectsnutrientcompositionnumberseasonsfieldfree-airenrichmentchambersalsotestedalteredrelationshipenvironmentalconditionscommonmodelsshowedsignificantvariabilityfunctionaltraitsNcontentspecificarearespondedsimilarlyexperimentalternetCOassimilationgsensitivityenvironmentledreductionsmaximumcarboxylationphosphoenolpyruvateincreasedlimitationyearsfindingssuggesttolerantusedenhancepollutedregionsBioenergymaintainsconcentrationsBWBMED

Similar Articles

Cited By