Olfactory subsystems in the peripheral olfactory organ of anuran amphibians.

Lucas David Jungblut, John O Reiss, Andrea G Pozzi
Author Information
  1. Lucas David Jungblut: Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET) and Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. lucasjungblut@yahoo.com.ar. ORCID
  2. John O Reiss: Department of Biological Sciences, Humboldt State University, Arcata, CA, USA.
  3. Andrea G Pozzi: Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET) and Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Abstract

Anuran amphibians (frogs and toads) typically have a complex life cycle, involving aquatic larvae that metamorphose to semi-terrestrial juveniles and adults. However, the anuran olfactory system is best known in Xenopus laevis, an animal with secondarily aquatic adults. The larval olfactory organ contains two distinct sensory epithelia: the olfactory epithelium (OE) and vomeronasal organ (VNO). The adult organ contains three: the OE, the VNO, and a "middle cavity" epithelium (MCE), each in its own chamber. The sensory epithelia of Xenopus larvae have overlapping sensory neuron morphology (ciliated or microvillus) and olfactory receptor gene expression. The MCE of adults closely resembles the OE of larvae, and senses waterborne odorants; the adult OE is distinct and senses airborne odorants. Olfactory subsystems in other (non-pipid) anurans are diverse. Many anuran larvae show a patch of olfactory epithelium exposed in the buccal cavity (bOE), associated with a grazing feeding mode. And other anuran adults do not have a sensory MCE, but many have a distinct patch of epithelium adjacent to the OE, the recessus olfactorius (RO), which senses waterborne odorants. Olfaction plays a wide variety of roles in the life of larval and adult anurans, and some progress has been made in identifying relevant odorants, including pheromones and feeding cues. Increased knowledge of the diversity of olfactory structure, of odorant receptor expression patterns, and of factors that affect the access of odorants to sensory epithelia will enable us to better understand the adaptation of the anuran olfactory system to aquatic and terrestrial environments.

Keywords

References

  1. Altner H (1962) Untersuchungen über Leistungen und Bau der Nase des südafrikanischen Krallenfrosches Xenopus laevis (Daudin, 1803). Z Für Vgl Physiol 45:272–306
  2. Amano T, Gascuel J (2012) Expression of odorant receptor family, type 2 OR in the aquatic olfactory cavity of amphibian frog Xenopus tropicalis. PLoS One 7:e33922 [PMID: 22509266]
  3. Asay MJ, Harowicz PG, Su L (2005) Chemically mediated mate recognition in the tailed frog (Ascaphus truei). In: Mason RT, LeMaster MP, Müller-Schwarze D (eds) Chemical signals in vertebrates 10. Springer, New York, pp 24–31
  4. Belanger RM, Corkum LD (2009) Review of aquatic sex pheromones and chemical communication in anurans. J Herpetol 43:184–191
  5. Benzekri NA, Reiss JO (2012) Olfactory metamorphosis in the coastal tailed frog Ascaphus truei (Amphibia, Anura, Leiopelmatidae). J Morphol 273:68–87 [PMID: 21935974]
  6. Bishop IR, Foxon GEH (1968) The mechanism of breathing in the South American lungfish, Lepidosiren paradoxa; a radiological study. J Zool 154:263–271. https://doi.org/10.1111/j.1469-7998.1968.tb01663.x [DOI: 10.1111/j.1469-7998.1968.tb01663.x]
  7. Blaustein AR, O'hara RK (1982) Kin recognition in Rana cascadae tadpoles: maternal and paternal effects. Anim Behav 30:1151–1157
  8. Bossuyt F, Schulte LM, Maex M et al (2019) Multiple independent recruitment of sodefrin precursor-like factors in anuran sexually dimorphic glands. Mol Biol Evol 36:1921–1930. https://doi.org/10.1093/molbev/msz115 [DOI: 10.1093/molbev/msz115]
  9. Broman I (1920) Das Organon vomero-nasale Jacobsoni — ein Wassergeruchsorgan! Anat Hefte 58:137–191. https://doi.org/10.1007/BF02033831 [DOI: 10.1007/BF02033831]
  10. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187
  11. Byrne PG, Keogh JS (2007) Terrestrial toadlets use chemosignals to recognize conspecifics, locate mates and strategically adjust calling behaviour. Anim Behav 74:1155–1162. https://doi.org/10.1016/j.anbehav.2006.10.033 [DOI: 10.1016/j.anbehav.2006.10.033]
  12. Date-Ito A, Ohara H, Ichikawa M, Mori Y, Hagino-Yamagishi K (2008) Xenopus V1R vomeronasal receptor family is expressed in the main olfactory system. Chem Senses 33:339–346 [PMID: 18238827]
  13. Dawley EM (1998) Olfaction. In: Heatwole H (ed) Amphibian biology: sensory perception. Surrey Beatty & Sons, Chipping Norton, pp 713–742
  14. Dittrich K, Kuttler J, Hassenklöver T, Manzini I (2016) Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis. J Comp Neurol 524:986–998 [PMID: 26294036]
  15. Døving KB, Trotier D, Rosin JF, Holley A (1993) Functional architecture of the vomeronasal organ of the frog (genus Rana). Acta Zool 74:173–180
  16. Duellman WE, Trueb L (1986) Biology of amphibians. McGraw-Hill, New York
  17. Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206 [PMID: 7585937]
  18. Eisthen HL (1992) Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates. Microsc Res Tech 23:1–21 [PMID: 1392068]
  19. Eisthen HL (1997) Evolution of vertebrate olfactory systems. Brain Behav Evol 50:222–233 [PMID: 9310197]
  20. Eisthen HL (2000) Presence of the vomeronasal system in aquatic salamanders. Phil Trans Roy Soc Lond B 355:1209–1213
  21. Forester DC, Wisnieski A (1991) The significance of airborne olfactory cues to the recognition of home area by the dart-poison frog Dendrobates pumilio. J Herpetol 25:502–504. https://doi.org/10.2307/1564782 [DOI: 10.2307/1564782]
  22. Franceschini F, Sbarbati A, Zancanaro C (1991) The vomeronasal organ in the frog, Rana esculenta An electron microscopy study. J Submicrosc Cytol Pathol 23:221–231 [PMID: 2070348]
  23. Freitag J, Krieger J, Strotmann J, Breer H (1995) Two classes of olfactory receptors in Xenopus laevis. Neuron 15:1383–1392 [PMID: 8845161]
  24. Gaudin A, Gascuel J (2005) 3D atlas describing the ontogenic evolution of the primary olfactory projections in the olfactory bulb of Xenopus laevis. J Comp Neurol 489:403–424. https://doi.org/10.1002/cne.20655 [DOI: 10.1002/cne.20655]
  25. Gliem S, Syed AS, Sansone A, Kludt E, Tantalaki E, Hassenklöver T, Korsching SI, Manzini I (2013) Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream. Cell Mol Life Sci 70:1965–1984 [PMID: 23269434]
  26. González A, Morona R, López JM et al (2010) Lungfishes, like tetrapods, possess a vomeronasal system. Front Neuroanat 4:130. https://doi.org/10.3389/fnana.2010.00130 [DOI: 10.3389/fnana.2010.00130]
  27. Gradwell N (1969) The function of the internal nares of the bullfrog tadpole. Herpetologica 25:120–121
  28. Gradwell N (1971) Gill irrigation in Rana catesbeiana. Part II. On the musculoskeletal mechanism. Can J Zool 50:501–521
  29. Greer PL, Bear DM, Lassance JM, Bloom ML, Tsukahara T, Pashkovski SL, Masuda FK, Nowlan AC, Kirchner R, Hoekstra HE, Datta SR (2016) A family of non-GPCR chemosensors defines an alternative logic for mammalian olfaction. Cell 165:1734–1748 [PMID: 27238024]
  30. Grubb JC (1973) Olfactory orientation in Bufo woodhousei fowleri, Pseudacris clarki and Pseudacris streckeri. Anim Behav 21:726–732. https://doi.org/10.1016/S0003-3472(73)80098-3 [DOI: 10.1016/S0003-3472(73)80098-3]
  31. Hagino-Yamagishi K, Nakazawa H (2011) Involvement of Golf-expressing neurons in the vomeronasal system of Bufo japonicus. J Comp Neurol 519:3189–3201 [PMID: 21618228]
  32. Hagino-Yamagishi K, Moriya K, Kubo H, Wakabayashi Y, Isobe N, Saito S, Ichikawa M, Yazaki K (2004) Expression of vomeronasal receptor genes in Xenopus laevis. J Comp Neurol 472:246–256 [PMID: 15048691]
  33. Hansen A, Zielinski BS (2005) Diversity in the olfactory epithelium of bony fishes: development, lamellar arrangement, sensory neuron cell types and transduction components. J Neurocytol 34:183–208 [PMID: 16841163]
  34. Hansen A, Reiss JO, Gentry CL, Burd GD (1998) Ultrastructure of the olfactory organ in the clawed frog, Xenopus laevis, during larval development and metamorphosis. J Comp Neurol 398:273–288 [PMID: 9700571]
  35. Heerema JL, Bogart SJ, Helbing CC, Pyle GG (2020) Olfactory epithelium ontogenesis and function in postembryonic North American Bullfrog (Rana (Lithobates) catesbeiana) tadpoles. Can J Zool 98:367–375
  36. Helling H (1938) Das Geruchsorgan der Anuren, vergleichend-morphologisch betrachtet. Zeitschrift für Anatomie und Entwicklungsgeschichte 108:587–643
  37. Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90:763–773 [PMID: 9288755]
  38. Higgs DM, Burd GD (2001) Neuronal turnover in the Xenopus laevis olfactory epithelium during metamorphosis. J Comp Neurol 433:124–130 [PMID: 11283954]
  39. Jorgensen BC (2000) Amphibian respiration and olfaction and their relationships: from Robert Townson (1794) to the present. Biol Rev 75:297–345 [PMID: 11034014]
  40. Jungblut LD, Paz DA, López-Costa JJ, Pozzi AG (2009) Heterogeneous distribution of G protein alpha subunits in the main olfactory and vomeronasal systems of Rhinella (Bufo) arenarum tadpoles. Zool Sci 26:722–728
  41. Jungblut LD, Pozzi AG, Paz DA (2011) Larval development and metamorphosis of the olfactory and vomeronasal organs in the toad Rhinella (Bufo) arenarum (Hensel, 1867). Acta Zool 92:305–315
  42. Jungblut LD, Pozzi AG, Paz DA (2012) A putative functional vomeronasal system in anuran tadpoles. J Anat 221:364–372 [PMID: 22774780]
  43. Jungblut LD, Pozzi AG, Paz DA (2013) El sistema vomeronasal y su posible funcionalidad en larvas de anuros. Cuad Herpetol 27:47–56
  44. Jungblut LD, Reiss JO, Paz DA, Pozzi AG (2017) Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group. J Morphol 278:1208–1219 [PMID: 28503895]
  45. Junk A, Wenzel S, Vences M, Nowack C (2014) Deviant anatomy of the olfactory system of the Malagasy frog Mantidactylus betsileanus (Anura: Mantellidae). Zool Anz 253:338–344
  46. Jurgens JD (1971) The morphology of the nasal region of Amphibia and its bearing on the phylogeny of the group. Ann Univ Stellenbosch 46:1–146
  47. King JD, Rollins-Smith LA, Nielsen PF, John A, Conlon JM (2005) Characterization of a peptide from skin secretions of male specimens of the frog, Leptodactylus fallax that stimulates aggression in male frogs. Peptides 26:597–601 [PMID: 15752573]
  48. Kleerekoper H (1969) Olfaction in fishes. Indiana University Press, Bloomington
  49. Královec K, Žáková P, Mužáková V (2013) Development of the olfactory and vomeronasal organs in Discoglossus pictus (Discoglossidae, Anura). J Morphol 274:24–34. https://doi.org/10.1002/jmor.20073 [DOI: 10.1002/jmor.20073]
  50. Kramer G (1933) Untersuchungen über die Sinnesleistungen und das Orientierungsverhalten von Xenopus laevis Daud.. Zoologische Jahrbücher. Abteilung für allgemeine Zoologie und Physiologie der Tiere 52:629–676 (Doctoral dissertation)
  51. Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–650 [PMID: 16878137]
  52. Meredith M, Marques D, O’Connell R, Stern F (1980) Vomeronasal pump: significance for male hamster sexual behavior. Science 207:1224–1226 [PMID: 7355286]
  53. Mezler M, Konzelman S, Freitag J et al (1999) Expression of olfactory receptors during development in Xenopus laevis. J Exp Biol 202:365–376 [PMID: 9914145]
  54. Millery J, Briand L, Bézirard V, Blon F, Fenech C, Parpaillon LR, Quennedey B, Pernollet JC, Gascuel J (2005) Specific expression of olfactory binding protein in the aerial olfactory cavity of adult and developing Xenopus. Eur J Neurosc 22:1389–1313
  55. Mirza RS, Ferrari MC, Kiesecker JM, Chivers DP (2006) Responses of American toad tadpoles to predation cues: behavioural response thresholds, threat-sensitivity and acquired predation recognition. Behaviour 143:877–889
  56. Nakamuta S, Nakamuta N, Taniguchi K (2011) Distinct axonal projections from two types of olfactory receptor neurons in the middle chamber epithelium of Xenopus laevis. Cell Tissue Res 346:27–33. https://doi.org/10.1007/s00441-011-1238-y [DOI: 10.1007/s00441-011-1238-y]
  57. Nakamuta S, Nakamuta N, Taniguchi K, Taniguchi K (2012) Histological and ultrastructural characteristics of the primordial vomeronasal organ in lungfish. Anat Rec Adv Integr Anat Evol Biol 295:481–491. https://doi.org/10.1002/ar.22415 [DOI: 10.1002/ar.22415]
  58. Nakamuta S, Nakamuta N, Taniguchi K, Taniguchi K (2013) Localization of the primordial vomeronasal organ and its relationship to the associated gland in lungfish. J Anat 222:481–485 [PMID: 23368671]
  59. Niimura Y, Nei M (2005) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci 102:6039–6044 [PMID: 15824306]
  60. Nodari F, Hsu FF, Fu X, Holekamp TF, Kao LF, Turk J, Holy TE (2008) Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J Neurosci 28:6407–6418 [PMID: 18562612]
  61. Nowack C (2011) Functional anatomy of the lateral nasal gland in anuran amphibians and its relation to the vomeronasal organ. J Herpetol 45:511–515
  62. Nowack C, Wöhrmann-Repenning A (2009) New anatomical analyses suggest a pumping mechanism for the vomeronasal organ in anurans. Copeia 2009:1–6
  63. Nowack C, Wöhrmann-Repenning A (2010) The nasolacrimal duct of anuran amphibians: suggestions on its functional role in vomeronasal perception. J Anat 216:510–517 [PMID: 20136666]
  64. Nowack C, Jordan S, Wittmer C (2013) The recessus olfactorius: a cryptic olfactory organ of anuran amphibians. In: East ML, Dehnhard M (eds) Chemical signals in vertebrates 12. Springer, New York, pp 37–48
  65. Nowack C, Peram PS, Wenzel S et al (2017) Volatile compound secretion coincides with modifications of the olfactory organ in mantellid frogs. J Zool 303:72–81. https://doi.org/10.1111/jzo.12467 [DOI: 10.1111/jzo.12467]
  66. Oikawa T, Suzuki K, Saito TR et al (1998) Fine structure of three types of olfactory organ in Xenopus laevis. Anat Rec 252:301–310 [PMID: 9776085]
  67. Pearl CA, Cervantes M, Chan M, Ho U, Shoji R, Thomas EO (2000) Evidence for a mate-attracting chemosignal in the dwarf African clawed frog Hymenochirus. Horm Behav 38:67–74 [PMID: 10924288]
  68. Pelosi P (1996) Perireceptor events in olfaction. J Neurobiol 30:3–19 [PMID: 8727979]
  69. Perriman AW, Apponyi MA, Buntine MA, Jackway RJ, Rutland MW, White JW, Bowie JH (2008) Surface movement in water of splendipherin, the aquatic male sex pheromone of the tree frog Litoria splendida. FEBS J 275:3362–3374 [PMID: 18494800]
  70. Popescu VD, Brodie BS, Hunter ML, Zydlewski JD (2012) Use of olfactory cues by newly metamorphosed wood frogs (Lithobates sylvaticus) during emigration. Copeia 2012:424–431. https://doi.org/10.1643/CE-11-062 [DOI: 10.1643/CE-11-062]
  71. Poth D, Wollenberg KC, Vences M, Schulz S (2012) Volatile amphibian pheromones: macrolides from mantellid frogs from Madagascar. Angew Chem Int Ed 51:2187–2190. https://doi.org/10.1002/anie.201106592 [DOI: 10.1002/anie.201106592]
  72. Quinzio SI, Reiss JO (2017) The ontogeny of the olfactory system in ceratophryid frogs (Anura, Ceratophryidae). J Morphol 279:37–49 [PMID: 28948636]
  73. Raices M, Jungblut LD, Pozzi AG (2020) Evidence of the peptide identity of the epidermal alarm cue in tadpoles of the toad Rhinella arenarum. Herpetol J 30:230–233
  74. Reese TS (1965) Olfactory cilia in the frog. J Cell Biol 25:209–230. https://doi.org/10.1083/jcb.25.2.209 [DOI: 10.1083/jcb.25.2.209]
  75. Reiss JO, Burd GD (1997) Metamorphic remodeling of the primary olfactory projection in Xenopus: developmental independence of projections from olfactory neuron subclasses. J Neurobiol 32:213–222 [PMID: 9032663]
  76. Reiss JO, Eisthen HL (2008) Comparative anatomy and physiology of chemical senses in amphibians. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Pres, Berkeley, pp 43–63
  77. Rivière S, Challet L, Fluegge D, Spehr M, Rodriguez I (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459:574–577 [PMID: 19387439]
  78. Sansone A, Hassenklöver T, Offner T, Fu X, Holy TE, Manzini I (2015) Dual processing of sulfated steroids in the olfactory system of an anuran amphibian. Front Cell Neurosci 9:373 [PMID: 26441543]
  79. Shi Y-B (2000) Amphibian metamorphosis: from morphology to molecular biology. Wiley, New York
  80. Shiba Y, Sumomogi H, Nomura S et al (1980) Oral chemoreceptor organs of bullfrog tadpoles during metamorphosis. Develop Growth Differ 22:209–217. https://doi.org/10.1111/j.1440-169X.1980.00209.x [DOI: 10.1111/j.1440-169X.1980.00209.x]
  81. Shinn EA, Dole JW (1978) Evidence for a role for olfactory cues in the feeding response of leopard frogs, Rana pipiens. Herpetologica 34:167–172
  82. Sinsch U (1990) Migration and orientation in anuran amphibians. Ethol Ecol Evol 2:65–79
  83. Sollai G, Melis M, Magri S et al (2019) Association between the rs2590498 polymorphism of odorant binding protein (OBPIIa) gene and olfactory performance in healthy subjects. Behav Brain Res 372:112030. https://doi.org/10.1016/j.bbr.2019.112030 [DOI: 10.1016/j.bbr.2019.112030]
  84. Sorensen PW, Fine JM, Dvornikovs V, Jeffrey CS, Shao F, Wang J, Vrieze LA, Kari R, Anderson KR, Hoye TR (2005) Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nat Chem Biol 1:324–328 [PMID: 16408070]
  85. Starnberger I, Preininger D, Hödl W (2014) From uni- to multimodality: towards an integrative view on anuran communication. J Comp Physiol A 200:777–787. https://doi.org/10.1007/s00359-014-0923-1 [DOI: 10.1007/s00359-014-0923-1]
  86. Supekar SC, Gramapurohit NP (2018) Larval skipper frogs recognise kairomones of certain predators innately. J Ethol 36:143–149
  87. Syed AS, Sansone A, Nadler W, Manzini I, Korsching SI (2013) Ancestral amphibian v2rs are expressed in the main olfactory epithelium. Proc Natl Acad Sci 110:7714–7719 [PMID: 23613591]
  88. Syed AS, Sansone A, Röner S, Nia SB, Manzini I, Korsching SI (2015) Different expression domains for two closely related amphibian TAARs generate a bimodal distribution similar to neuronal responses to amine odors. Sci Rep 5:13935 [PMID: 26358883]
  89. Syed AS, Sansone A, Hassenklöver T, Manzini I, Korsching SI (2017) Coordinated shift of olfactory amino acid responses and V2R expression to an amphibian water nose during metamorphosis. Cell Mol Life Sci 74:1711–1719 [PMID: 27990576]
  90. Taniguchi K, Toshima Y, Saito TR, Taniguchi K (1996) Development of the olfactory epithelium and vomeronasal organ in the Japanese reddish frog, Rana japonica. J Vet Med Sci 58:7–15 [PMID: 8645760]
  91. Tracy CR, Dole JW (1969) Orientation of displaced California toads, Bufo boreas, to their breeding sites. Copeia 1969:693–700. https://doi.org/10.2307/1441795 [DOI: 10.2307/1441795]
  92. Veeranagoudar DK, Shanbhag BA, Saidapur SK (2004) Mechanism of food detection in the tadpoles of the bronze frog Rana temporalis. Acta Ethol 7:37–41
  93. Wabnitz PA, Bowie JH, Tyler MJ et al (1999) Aquatic sex pheromone from a male tree frog. Nature 401:444–445
  94. Wakabayashi Y, Ichikawa M (2008) Localization of G protein alpha subunits and morphology of receptor neurons in olfactory and vomeronasal epithelia in Reeve’s turtle, Geoclemys reevesii. Zool Sci 25:178–187
  95. Waldman B (1986) Chemical ecology of kin recognition in anuran amphibians. In: Chemical signals in vertebrates 4. Springer, Boston, pp 225–242. https://doi.org/10.1111/j.1095-8312.1979.tb00056.x [DOI: 10.1111/j.1095-8312.1979.tb00056.x]
  96. Wassersug R (1980) Internal oral features of larvae from eight anuran families: functional, systematic, evolutionary and ecological considerations. Univ Kans Mus Nat Hist Misc Publ 68:1–146
  97. Wassersug RJ, Hoff K (1979) A comparative study of the buccal pumping mechanism of tadpoles. Biol J Linn Soc 12:225–259. https://doi.org/10.1111/j.1095-8312.1979.tb00056.x [DOI: 10.1111/j.1095-8312.1979.tb00056.x]
  98. Weiss L, Jungblut LD, Pozzi AG, O’Connell LA, Hassenklöver T, Manzini I (2020) Conservation of glomerular organization in the main olfactory bulb of anuran larvae. Front Neuroanat 14:1–8
  99. Wittmer C, Nowack C (2017) Epithelial crypts: a complex and enigmatic olfactory organ in African and South American lungfish (Lepidosireniformes, Dipnoi). J Morphol 278:791–800 [PMID: 28333390]
  100. Woodley SK (2014) Chemical signaling in amphibians. In: Mucignat-Caretta (ed) Neurobiology of chemical communication. CRC Press/Taylor & Francis, Boca Raton, pp 255–284
  101. Yvroud M (1966) Développement de l’organe olfactif et des glandes annexes chez Alytes obstetricans Laurenti au cours de la vie larvaire et de la métamorphose. Arch Anat Microsc 55:387–410
  102. Zeiske E, Theisen B, Breucker H (1992) Structure, development, and evolutionary aspects of the peripheral olfactory system. In: Hara TJ (ed) Fish chemoreception. Springer, Netherlands, pp 13–39

MeSH Term

Amphibians
Animals
Olfactory Receptor Neurons