Local and systemic inflammatory responses to lipopolysaccharide in broilers: new insights using a two-window approach.

Chelsea E French, Marites A Sales, Samuel J Rochell, Angeline Rodriguez, Gisela F Erf
Author Information
  1. Chelsea E French: Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
  2. Marites A Sales: Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
  3. Samuel J Rochell: Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
  4. Angeline Rodriguez: Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
  5. Gisela F Erf: Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA. Electronic address: gferf@uark.edu.

Abstract

The inflammatory response involves a complex interplay of local tissue activities designed to recruit leukocytes and proteins from the blood to the infected tissue. For egg-type chickens, we established the growing feather (GF) as an accessible tissue test site to monitor tissue responses to injected test-material. For commercial broilers, whose health depends to a large extent on innate immune system functions, the GF test system offers an important novel window to directly assess their natural defenses. This study was conducted to adapt the GF test system for use in broilers, and use it to simultaneously examine local (GF) and systemic (blood) inflammatory responses initiated by GF pulp injection of lipopolysaccharide (LPS). Specifically, GF of 12 male and 12 female, 5-week-old broilers were injected with LPS (16 GF/chicken; 1 μg LPS/GF). Blood and GF were collected at 0 (before), 6, and 24 h after GF injection. GF pulp was used to determine leukocyte-infiltration and gene-expression profiles, reactive-oxygen-species generation, and superoxide dismutase (SOD) activity. Blood was used to determine blood cell profiles and SOD activity. A time effect (P ≤ 0.05) was observed for most aspects examined. In GF, LPS injection resulted in heterophil and monocyte infiltration reaching maximal levels at 6 and 24 h, respectively. Reactive-oxygen-species generation, SOD activity, and mRNA levels of IL-1β, IL-8, IL-6, IL-10, and cathelicidin B1 were elevated, whereas those of TNF-α, LITAF, SOD1, and SOD2 decreased after LPS injection. In blood, levels of heterophils and monocytes were elevated at 6 h, lymphocytes and RBC decreased at 6 h, and thrombocytes and SOD activity increased at 24 h. Assessment of LPS-induced activities at the site of inflammation (GF) provided novel and more relevant insights into temporal, qualitative, and quantitative aspects of inflammatory responses than blood. Knowledge generated from this dual-window approach may find direct application in identification of individuals with robust, balanced innate defenses and provide a platform for studying the effects of exogenous treatments (e.g., nutrients, probiotics, immunomodulators, etc.) on inflammatory responses taking place in a complex tissue.

Keywords

References

  1. Nature. 1963 Apr 20;198:298-9 [PMID: 13957369]
  2. Poult Sci. 2003 May;82(5):691-8 [PMID: 12762389]
  3. Avian Pathol. 1993 Sep;22(3):591-603 [PMID: 18671043]
  4. Poult Sci. 2012 Aug;91(8):1893-8 [PMID: 22802183]
  5. Poult Sci. 2014 Dec;93(12):3017-27 [PMID: 25306458]
  6. Poult Sci. 2006 Aug;85(8):1364-72 [PMID: 16903465]
  7. Am J Pathol. 2011 Jun;178(6):2752-9 [PMID: 21641397]
  8. Vet Immunol Immunopathol. 2002 Sep 25;88(3-4):149-61 [PMID: 12127413]
  9. Vet Immunol Immunopathol. 2008 Mar 15;122(1-2):83-93 [PMID: 18045696]
  10. Front Vet Sci. 2019 Nov 22;6:420 [PMID: 31850381]
  11. Immunol Lett. 2015 Jan;163(1):32-9 [PMID: 25448707]
  12. Vet Res. 2020 May 24;51(1):72 [PMID: 32448367]
  13. J Appl Toxicol. 2017 Nov;37(11):1317-1324 [PMID: 28621440]
  14. Dev Comp Immunol. 2016 Oct;63:206-12 [PMID: 27108075]
  15. Dev Comp Immunol. 1986 Summer;10(3):387-94 [PMID: 3770269]
  16. Dev Comp Immunol. 2015 Apr;49(2):225-30 [PMID: 25475960]
  17. J Immunol. 2017 Jul 15;199(2):774-781 [PMID: 28600293]
  18. Avian Dis. 1990 Apr-Jun;34(2):369-73 [PMID: 2369376]
  19. Dev Comp Immunol. 2017 Sep;74:167-177 [PMID: 28456536]
  20. J Anim Physiol Anim Nutr (Berl). 2017 Aug;101(4):743-754 [PMID: 27080348]
  21. Acta Vet Scand Suppl. 1973;:1-103 [PMID: 4518920]
  22. Poult Sci. 2017 Dec 1;96(12):4200-4207 [PMID: 29053870]
  23. Poult Sci. 1977 Jan;56(1):249-56 [PMID: 305039]
  24. Poult Sci. 2003 Dec;82(12):1886-97 [PMID: 14717546]
  25. Avian Pathol. 2009 Oct;38(5):403-11 [PMID: 19937527]
  26. Poult Sci. 2017 Oct 1;96(10):3574-3580 [PMID: 28938788]
  27. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  28. Front Immunol. 2019 Aug 07;10:1762 [PMID: 31440233]
  29. Infect Immun. 2005 Apr;73(4):2094-100 [PMID: 15784550]
  30. Avian Dis. 1994 Jan-Mar;38(1):161-4 [PMID: 8002887]
  31. Environ Int. 2016 Sep;94:1-7 [PMID: 27182666]
  32. Front Immunol. 2018 Apr 17;9:605 [PMID: 29719531]
  33. Res Vet Sci. 1981 Jan;30(1):79-82 [PMID: 6264557]
  34. Poult Sci. 2016 Sep 1;95(9):2011-22 [PMID: 27083544]
  35. Vet Immunol Immunopathol. 1998 Jun 30;64(1):83-95 [PMID: 9656433]
  36. Int J Mol Sci. 2017 Sep 08;18(9): [PMID: 28885563]
  37. Vet Immunol Immunopathol. 2009 Oct 15;131(3-4):200-10 [PMID: 19477023]
  38. Poult Sci. 1975 Jan;54(1):183-90 [PMID: 1094443]
  39. Vet Immunol Immunopathol. 2012 Jan 15;145(1-2):86-99 [PMID: 22088676]
  40. Vet Immunol Immunopathol. 2016 Feb;170:20-4 [PMID: 26872627]
  41. Avian Dis. 1983 Oct-Dec;27(4):972-9 [PMID: 6360120]
  42. Dev Comp Immunol. 2006;30(10):919-29 [PMID: 16466659]
  43. Dev Comp Immunol. 2005;29(9):791-807 [PMID: 15936435]
  44. Dev Comp Immunol. 2001 Sep;25(7):629-38 [PMID: 11472784]
  45. Poult Sci. 1991 May;70(5):1176-86 [PMID: 1852691]
  46. Proc Soc Exp Biol Med. 1986 Apr;181(4):560-8 [PMID: 3513194]
  47. Inflammation. 2003 Aug;27(4):225-31 [PMID: 14527175]
  48. Res Vet Sci. 1981 Sep;31(2):231-5 [PMID: 7323468]

MeSH Term

Animals
Chickens
Cytokines
Feathers
Female
Gene Expression Regulation
Inflammation
Leukocyte Count
Lipopolysaccharides
Male
Monocytes
Superoxide Dismutase

Chemicals

Cytokines
Lipopolysaccharides
Superoxide Dismutase

Word Cloud

Created with Highcharts 10.0.0GFinflammatorytissuebloodresponsesinjectionLPSSODactivitytestbroilerssystemlipopolysaccharide24 hlevelsresponsecomplexlocalactivitiessiteinjectedinnatenoveldefensesusesystemicpulp12Blood6useddetermineprofilesgenerationaspectsinfiltrationelevateddecreased6 hinsightsapproachinvolvesinterplaydesignedrecruitleukocytesproteinsinfectedegg-typechickensestablishedgrowingfeatheraccessiblemonitortest-materialcommercialwhosehealthdependslargeextentimmunefunctionsoffersimportantwindowdirectlyassessnaturalstudyconductedadaptsimultaneouslyexamineinitiatedSpecificallymalefemale5-week-old16 GF/chicken1 μgLPS/GFcollected0leukocyte-infiltrationgene-expressionreactive-oxygen-speciessuperoxidedismutasecelltimeeffectP ≤ 005observedexaminedresultedheterophilmonocytereachingmaximalrespectivelyReactive-oxygen-speciesmRNAIL-1βIL-8IL-6IL-10cathelicidinB1whereasTNF-αLITAFSOD1SOD2heterophilsmonocyteslymphocytesRBCthrombocytesincreasedAssessmentLPS-inducedinflammationprovidedrelevanttemporalqualitativequantitativeKnowledgegenerateddual-windowmayfinddirectapplicationidentificationindividualsrobustbalancedprovideplatformstudyingeffectsexogenoustreatmentsegnutrientsprobioticsimmunomodulatorsetctakingplaceLocalbroilers:newusingtwo-windowbroilercytokineleukocyte

Similar Articles

Cited By (8)