Systematic Identification of Molecular Targets and Pathways Related to Human Organ Level Toxicity.

Tuan Xu, Leihong Wu, Menghang Xia, Anton Simeonov, Ruili Huang
Author Information
  1. Tuan Xu: Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States.
  2. Leihong Wu: National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States.
  3. Menghang Xia: Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States. ORCID
  4. Anton Simeonov: Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States.
  5. Ruili Huang: Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States. ORCID

Abstract

The mechanisms leading to organ level toxicities are poorly understood. In this study, we applied an integrated approach to deduce the molecular targets and biological pathways involved in chemically induced toxicity for eight common human organ level toxicity end points (carcinogenicity, cardiotoxicity, developmental toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, reproductive toxicity, and skin toxicity). Integrated analysis of in vitro assay data, molecular targets and pathway annotations from the literature, and toxicity-molecular target associations derived from text mining, combined with machine learning techniques, were used to generate molecular targets for each of the organ level toxicity end points. A total of 1516 toxicity-related genes were identified and subsequently analyzed for biological pathway coverage, resulting in 206 significant pathways (-value <0.05), ranging from 3 (e.g., developmental toxicity) to 101 (e.g., skin toxicity) for each toxicity end point. This study presents a systematic and comprehensive analysis of molecular targets and pathways related to various in vivo toxicity end points. These molecular targets and pathways could aid in understanding the biological mechanisms of toxicity and serve as a guide for the design of suitable in vitro assays for more efficient toxicity testing. In addition, these results are complementary to the existing adverse outcome pathway (AOP) framework and can be used to aid in the development of novel AOPs. Our results provide abundant testable hypotheses for further experimental validation.

References

  1. Cell Metab. 2005 Apr;1(4):259-71 [PMID: 16054070]
  2. Methods Mol Biol. 2016;1473:111-22 [PMID: 27518629]
  3. Nature. 2013 Jul 25;499(7459):438-43 [PMID: 23863939]
  4. J Nutr. 2007 Dec;137(12):2809-13 [PMID: 18029504]
  5. Front Genet. 2018 Sep 18;9:396 [PMID: 30279702]
  6. Bioinformatics. 2005 Oct 15;21(20):3940-1 [PMID: 16096348]
  7. Front Pharmacol. 2019 Apr 26;10:445 [PMID: 31133849]
  8. Chem Res Toxicol. 2020 Mar 16;33(3):731-741 [PMID: 32077278]
  9. Int J Mol Med. 2017 Dec;40(6):1679-1690 [PMID: 29039460]
  10. Environ Toxicol Chem. 2011 Jan;30(1):64-76 [PMID: 20963853]
  11. Toxicology. 2013 Oct 4;312:158-65 [PMID: 23978457]
  12. Rev Environ Health. 2009 Jan-Mar;24(1):15-45 [PMID: 19476290]
  13. Antioxid Redox Signal. 2005 May-Jun;7(5-6):649-53 [PMID: 15890009]
  14. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8185-9 [PMID: 1325649]
  15. Int J Mol Sci. 2017 Apr 25;18(5): [PMID: 28441342]
  16. Arch Toxicol. 2018 Oct;92(10):3007-3029 [PMID: 30155722]
  17. Nat Rev Neurosci. 2013 Jun;14(6):383-400 [PMID: 23686171]
  18. Biochimie. 2017 May;136:65-74 [PMID: 27916647]
  19. Int J Environ Res Public Health. 2019 Dec 03;16(23): [PMID: 31816860]
  20. Front Pharmacol. 2019 Jun 11;10:561 [PMID: 31244651]
  21. Toxicol Pathol. 2016 Jul;44(5):763-83 [PMID: 27025954]
  22. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7782-6 [PMID: 2217211]
  23. Annu Rev Pharmacol Toxicol. 2003;43:309-34 [PMID: 12540743]
  24. Nat Rev Drug Discov. 2015 Feb;14(2):130-46 [PMID: 25633797]
  25. Environ Toxicol Chem. 2010 Mar;29(3):730-41 [PMID: 20821501]
  26. Curr Chem Genomics. 2011;5:21-9 [PMID: 21643507]
  27. Toxicol In Vitro. 2013 Feb;27(1):164-73 [PMID: 22981796]
  28. Int J Mol Sci. 2018 Aug 11;19(8): [PMID: 30103502]
  29. Environ Sci Technol. 2016 Jun 7;50(11):5438-53 [PMID: 27143250]
  30. Curr Med Chem. 2013;20(27):3370-96 [PMID: 23746272]
  31. Altern Lab Anim. 2002 Dec;30 Suppl 2:23-32 [PMID: 12513648]
  32. Environ Health Perspect. 2017 Sep 01;125(9):096001 [PMID: 28934726]
  33. Nat Rev Cancer. 2017 Jan 27;17(2):93-115 [PMID: 28127048]
  34. BMC Bioinformatics. 2011 Mar 17;12:77 [PMID: 21414208]
  35. Toxicol In Vitro. 2015 Aug;29(5):884-92 [PMID: 25841332]
  36. Environ Health Perspect. 2011 Aug;119(8):1142-8 [PMID: 21543282]
  37. Drug Discov Today. 2016 Apr;21(4):648-53 [PMID: 26948801]
  38. Biomaterials. 2015 Aug;60:20-30 [PMID: 25978005]
  39. Sci Rep. 2018 Feb 28;8(1):3783 [PMID: 29491351]
  40. Theor Biol Med Model. 2016 Feb 29;13:7 [PMID: 26925829]
  41. Sci Total Environ. 2018 Jul 1;628-629:1542-1556 [PMID: 30045572]
  42. J Toxicol Clin Toxicol. 2000;38(2):123-8 [PMID: 10778908]
  43. Nat Commun. 2016 Jan 26;7:10425 [PMID: 26811972]
  44. Nucleic Acids Res. 2015 Jan;43(Database issue):D900-6 [PMID: 25313158]
  45. Front Endocrinol (Lausanne). 2013 Aug 15;4:100 [PMID: 23966979]

Grants

  1. Y02 ES007020/NIEHS NIH HHS
  2. Z99 TR999999/Intramural NIH HHS
  3. ZIA TR000040/Intramural NIH HHS

MeSH Term

Environmental Pollutants
Humans
Machine Learning
Toxicity Tests

Chemicals

Environmental Pollutants

Word Cloud

Created with Highcharts 10.0.0toxicitymoleculartargetspathwaysendorganlevelbiologicalpointspathwaymechanismsstudydevelopmentalskinanalysisvitrousedegaidresultsleadingtoxicitiespoorlyunderstoodappliedintegratedapproachdeduceinvolvedchemicallyinducedeightcommonhumancarcinogenicitycardiotoxicityhepatotoxicitynephrotoxicityneurotoxicityreproductiveIntegratedassaydataannotationsliteraturetoxicity-moleculartargetassociationsderivedtextminingcombinedmachinelearningtechniquesgeneratetotal1516toxicity-relatedgenesidentifiedsubsequentlyanalyzedcoverageresulting206significant-value<005ranging3101pointpresentssystematiccomprehensiverelatedvariousvivounderstandingserveguidedesignsuitableassaysefficienttestingadditioncomplementaryexistingadverseoutcomeAOPframeworkcandevelopmentnovelAOPsprovideabundanttestablehypothesesexperimentalvalidationSystematicIdentificationMolecularTargetsPathwaysRelatedHumanOrganLevelToxicity

Similar Articles

Cited By