Evolved bacterial resistance against fluoropyrimidines can lower chemotherapy impact in the host.

Brittany Rosener, Serkan Sayin, Peter O Oluoch, Aurian P Garc��a Gonz��lez, Hirotada Mori, Albertha Jm Walhout, Amir Mitchell
Author Information
  1. Brittany Rosener: Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States. ORCID
  2. Serkan Sayin: Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States. ORCID
  3. Peter O Oluoch: Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States. ORCID
  4. Aurian P Garc��a Gonz��lez: Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States.
  5. Hirotada Mori: Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan. ORCID
  6. Albertha Jm Walhout: Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States. ORCID
  7. Amir Mitchell: Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States. ORCID

Abstract

Metabolism of host-targeted drugs by the microbiome can substantially impact host treatment success. However, since many host-targeted drugs inadvertently hamper microbiome growth, repeated drug administration can lead to microbiome evolutionary adaptation. We tested if evolved bacterial resistance against host-targeted drugs alters their drug metabolism and impacts host treatment success. We used a model system of , its bacterial diet, and two fluoropyrimidine chemotherapies. Genetic screens revealed that most of loss-of-function resistance mutations in also reduced drug toxicity in the host. We found that resistance rapidly emerged in under natural selection and converged to a handful of resistance mechanisms. Surprisingly, we discovered that nutrient availability during bacterial evolution dictated the dietary effect on the host - only bacteria evolving in nutrient-poor media reduced host drug toxicity. Our work suggests that bacteria can rapidly adapt to host-targeted drugs and by doing so may also impact the host.

Keywords

References

  1. Cell. 2019 Aug 8;178(4):795-806.e12 [PMID: 31398337]
  2. Nat Commun. 2020 Jan 17;11(1):362 [PMID: 31953381]
  3. Proc Natl Acad Sci U S A. 1960 Mar;46(3):324-7 [PMID: 16578486]
  4. Biochemistry. 1962 Jul;1:543-52 [PMID: 13921708]
  5. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1004-12 [PMID: 16590300]
  6. Science. 2017 Sep 15;357(6356):1156-1160 [PMID: 28912244]
  7. Nature. 2019 Jun;570(7762):462-467 [PMID: 31158845]
  8. Nature. 2018 Mar 29;555(7698):623-628 [PMID: 29555994]
  9. PLoS Genet. 2017 Jan 27;13(1):e1006590 [PMID: 28129339]
  10. Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:417-435 [PMID: 31386593]
  11. Mol Syst Biol. 2006;2:2006.0008 [PMID: 16738554]
  12. PLoS Genet. 2014 Mar 06;10(3):e1004182 [PMID: 24603313]
  13. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  14. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  15. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  16. Genetics. 2019 Mar;211(3):1029-1044 [PMID: 30670539]
  17. Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8173-80 [PMID: 26100898]
  18. Genetics. 2014 Jun;197(2):451-65 [PMID: 24939991]
  19. Cell Host Microbe. 2019 May 8;25(5):656-667.e8 [PMID: 31028005]
  20. Curr Opin Microbiol. 2017 Oct;39:128-135 [PMID: 29169088]
  21. Nature. 2015 Dec 10;528(7581):262-266 [PMID: 26633628]
  22. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  23. Nat Commun. 2018 Jul 9;9(1):2655 [PMID: 29985401]
  24. Nat Rev Microbiol. 2019 Dec;17(12):764-775 [PMID: 31417197]
  25. Microb Cell Fact. 2013 Jul 01;12:64 [PMID: 23815749]
  26. BMC Genomics. 2014 Nov 29;15:1039 [PMID: 25432719]
  27. BMC Bioinformatics. 2009 May 27;10:161 [PMID: 19473525]
  28. mBio. 2014 Jul 08;5(4):e01442-14 [PMID: 25006232]
  29. Curr Opin Microbiol. 2017 Aug;38:114-121 [PMID: 28591676]
  30. PLoS Biol. 2019 Jan 23;17(1):e3000102 [PMID: 30673701]
  31. Gut. 2016 May;65(5):740-8 [PMID: 26657899]
  32. Science. 2020 May 29;368(6494):973-980 [PMID: 32467386]
  33. Nat Microbiol. 2018 Apr;3(4):514-522 [PMID: 29556107]
  34. Cell Host Microbe. 2019 Apr 10;25(4):499-512.e8 [PMID: 30926240]
  35. Science. 2017 Jun 2;356(6341):938-945 [PMID: 28572388]
  36. Cell. 2017 Apr 20;169(3):442-456.e18 [PMID: 28431245]
  37. Nature. 2002 Jul 25;418(6896):387-91 [PMID: 12140549]
  38. Nucleic Acids Res. 2013 Jan;41(Database issue):D955-61 [PMID: 23180760]
  39. Cell. 2017 Apr 20;169(3):431-441.e8 [PMID: 28431244]
  40. Nat Rev Microbiol. 2016 Apr;14(5):273-87 [PMID: 26972811]
  41. FEMS Microbiol Lett. 2000 Jan 15;182(2):319-25 [PMID: 10620686]
  42. Sci Rep. 2015 Sep 29;5:14554 [PMID: 26416623]
  43. PLoS Genet. 2016 Nov 3;12(11):e1006420 [PMID: 27812114]
  44. Cell. 2019 Sep 5;178(6):1299-1312.e29 [PMID: 31474368]
  45. Mol Syst Biol. 2020 Mar;16(3):e9195 [PMID: 32187448]
  46. Nucleic Acids Res. 2019 Jan 8;47(D1):D330-D338 [PMID: 30395331]
  47. Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2934-2939 [PMID: 28246332]
  48. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  49. J Mol Biol. 1998 Jul 24;280(4):571-82 [PMID: 9677289]
  50. Science. 2013 Dec 13;342(6164):1364-7 [PMID: 24231808]
  51. J Cell Sci. 2012 Dec 1;125(Pt 23):5591-6 [PMID: 23420197]

Grants

  1. DK068429/NIGMS NIH HHS
  2. GM133775/NIGMS NIH HHS
  3. R01 DK068429/NIDDK NIH HHS
  4. F31 GM122393/NIGMS NIH HHS
  5. R56 DK068429/NIDDK NIH HHS
  6. GM122393/NIGMS NIH HHS
  7. R35 GM133775/NIGMS NIH HHS

MeSH Term

Animals
Anti-Bacterial Agents
Antimetabolites
Antimetabolites, Antineoplastic
Caenorhabditis elegans
DNA Barcoding, Taxonomic
Directed Molecular Evolution
Drug Resistance, Bacterial
Escherichia coli
Floxuridine
Fluorouracil
Gene Deletion
Pyrimidines
Sequence Analysis, RNA
Whole Genome Sequencing

Chemicals

Anti-Bacterial Agents
Antimetabolites
Antimetabolites, Antineoplastic
Pyrimidines
Floxuridine
Fluorouracil

Word Cloud

Created with Highcharts 10.0.0hostdrugresistancehost-targeteddrugsmicrobiomecanbacterialimpactadaptationtreatmentsuccessevolutionaryalsoreducedtoxicityrapidlybacteriachemotherapybiologyMetabolismsubstantiallyHoweversincemanyinadvertentlyhampergrowthrepeatedadministrationleadtestedevolvedaltersmetabolismimpactsusedmodelsystemdiettwofluoropyrimidinechemotherapiesGeneticscreensrevealedloss-of-functionmutationsfoundemergednaturalselectionconvergedhandfulmechanismsSurprisinglydiscoverednutrientavailabilityevolutiondictateddietaryeffect-evolvingnutrient-poormediaworksuggestsadaptmayEvolvedfluoropyrimidineslowerCelegansEcolicomputationalsystems

Similar Articles

Cited By