Evolved bacterial resistance against fluoropyrimidines can lower chemotherapy impact in the host.
Brittany Rosener, Serkan Sayin, Peter O Oluoch, Aurian P Garc��a Gonz��lez, Hirotada Mori, Albertha Jm Walhout, Amir Mitchell
Author Information
Brittany Rosener: Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States. ORCID
Serkan Sayin: Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States. ORCID
Peter O Oluoch: Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States. ORCID
Aurian P Garc��a Gonz��lez: Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States.
Hirotada Mori: Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan. ORCID
Albertha Jm Walhout: Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States. ORCID
Amir Mitchell: Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States. ORCID
中文译文
English
Metabolism of host-targeted drugs by the microbiome can substantially impact host treatment success. However, since many host-targeted drugs inadvertently hamper microbiome growth, repeated drug administration can lead to microbiome evolutionary adaptation. We tested if evolved bacterial resistance against host-targeted drugs alters their drug metabolism and impacts host treatment success. We used a model system of , its bacterial diet, and two fluoropyrimidine chemotherapies. Genetic screens revealed that most of loss-of-function resistance mutations in also reduced drug toxicity in the host. We found that resistance rapidly emerged in under natural selection and converged to a handful of resistance mechanisms. Surprisingly, we discovered that nutrient availability during bacterial evolution dictated the dietary effect on the host - only bacteria evolving in nutrient-poor media reduced host drug toxicity. Our work suggests that bacteria can rapidly adapt to host-targeted drugs and by doing so may also impact the host.
Cell. 2019 Aug 8;178(4):795-806.e12
[PMID: 31398337 ]
Nat Commun. 2020 Jan 17;11(1):362
[PMID: 31953381 ]
Proc Natl Acad Sci U S A. 1960 Mar;46(3):324-7
[PMID: 16578486 ]
Biochemistry. 1962 Jul;1:543-52
[PMID: 13921708 ]
Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1004-12
[PMID: 16590300 ]
Science. 2017 Sep 15;357(6356):1156-1160
[PMID: 28912244 ]
Nature. 2019 Jun;570(7762):462-467
[PMID: 31158845 ]
Nature. 2018 Mar 29;555(7698):623-628
[PMID: 29555994 ]
PLoS Genet. 2017 Jan 27;13(1):e1006590
[PMID: 28129339 ]
Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:417-435
[PMID: 31386593 ]
Mol Syst Biol. 2006;2:2006.0008
[PMID: 16738554 ]
PLoS Genet. 2014 Mar 06;10(3):e1004182
[PMID: 24603313 ]
Bioinformatics. 2014 Aug 1;30(15):2114-20
[PMID: 24695404 ]
Genome Biol. 2014;15(12):550
[PMID: 25516281 ]
Nat Biotechnol. 2016 May;34(5):525-7
[PMID: 27043002 ]
Genetics. 2019 Mar;211(3):1029-1044
[PMID: 30670539 ]
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8173-80
[PMID: 26100898 ]
Genetics. 2014 Jun;197(2):451-65
[PMID: 24939991 ]
Cell Host Microbe. 2019 May 8;25(5):656-667.e8
[PMID: 31028005 ]
Curr Opin Microbiol. 2017 Oct;39:128-135
[PMID: 29169088 ]
Nature. 2015 Dec 10;528(7581):262-266
[PMID: 26633628 ]
Nat Genet. 2000 May;25(1):25-9
[PMID: 10802651 ]
Nat Commun. 2018 Jul 9;9(1):2655
[PMID: 29985401 ]
Nat Rev Microbiol. 2019 Dec;17(12):764-775
[PMID: 31417197 ]
Microb Cell Fact. 2013 Jul 01;12:64
[PMID: 23815749 ]
BMC Genomics. 2014 Nov 29;15:1039
[PMID: 25432719 ]
BMC Bioinformatics. 2009 May 27;10:161
[PMID: 19473525 ]
mBio. 2014 Jul 08;5(4):e01442-14
[PMID: 25006232 ]
Curr Opin Microbiol. 2017 Aug;38:114-121
[PMID: 28591676 ]
PLoS Biol. 2019 Jan 23;17(1):e3000102
[PMID: 30673701 ]
Gut. 2016 May;65(5):740-8
[PMID: 26657899 ]
Science. 2020 May 29;368(6494):973-980
[PMID: 32467386 ]
Nat Microbiol. 2018 Apr;3(4):514-522
[PMID: 29556107 ]
Cell Host Microbe. 2019 Apr 10;25(4):499-512.e8
[PMID: 30926240 ]
Science. 2017 Jun 2;356(6341):938-945
[PMID: 28572388 ]
Cell. 2017 Apr 20;169(3):442-456.e18
[PMID: 28431245 ]
Nature. 2002 Jul 25;418(6896):387-91
[PMID: 12140549 ]
Nucleic Acids Res. 2013 Jan;41(Database issue):D955-61
[PMID: 23180760 ]
Cell. 2017 Apr 20;169(3):431-441.e8
[PMID: 28431244 ]
Nat Rev Microbiol. 2016 Apr;14(5):273-87
[PMID: 26972811 ]
FEMS Microbiol Lett. 2000 Jan 15;182(2):319-25
[PMID: 10620686 ]
Sci Rep. 2015 Sep 29;5:14554
[PMID: 26416623 ]
PLoS Genet. 2016 Nov 3;12(11):e1006420
[PMID: 27812114 ]
Cell. 2019 Sep 5;178(6):1299-1312.e29
[PMID: 31474368 ]
Mol Syst Biol. 2020 Mar;16(3):e9195
[PMID: 32187448 ]
Nucleic Acids Res. 2019 Jan 8;47(D1):D330-D338
[PMID: 30395331 ]
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2934-2939
[PMID: 28246332 ]
Nucleic Acids Res. 2000 Jan 1;28(1):27-30
[PMID: 10592173 ]
J Mol Biol. 1998 Jul 24;280(4):571-82
[PMID: 9677289 ]
Science. 2013 Dec 13;342(6164):1364-7
[PMID: 24231808 ]
J Cell Sci. 2012 Dec 1;125(Pt 23):5591-6
[PMID: 23420197 ]
DK068429/NIGMS NIH HHS
GM133775/NIGMS NIH HHS
R01 DK068429/NIDDK NIH HHS
F31 GM122393/NIGMS NIH HHS
R56 DK068429/NIDDK NIH HHS
GM122393/NIGMS NIH HHS
R35 GM133775/NIGMS NIH HHS
Animals
Anti-Bacterial Agents
Antimetabolites
Antimetabolites, Antineoplastic
Caenorhabditis elegans
DNA Barcoding, Taxonomic
Directed Molecular Evolution
Drug Resistance, Bacterial
Escherichia coli
Floxuridine
Fluorouracil
Gene Deletion
Pyrimidines
Sequence Analysis, RNA
Whole Genome Sequencing
Anti-Bacterial Agents
Antimetabolites
Antimetabolites, Antineoplastic
Pyrimidines
Floxuridine
Fluorouracil