Sustainability Challenges and Opportunities in Oligonucleotide Manufacturing.

Benjamin I Andrews, Firoz D Antia, Shawn B Brueggemeier, Louis J Diorazio, Stefan G Koenig, Michael E Kopach, Heewon Lee, Martin Olbrich, Anna L Watson
Author Information
  1. Benjamin I Andrews: Chemical Development, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom. ORCID
  2. Firoz D Antia: Biogen, Inc., Cambridge, Massachusetts 02142, United States.
  3. Shawn B Brueggemeier: Bristol-Myers Squibb, New Brunswick, New Jersey 08901, United States.
  4. Louis J Diorazio: Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 4TF, United Kingdom.
  5. Stefan G Koenig: Genentech, Inc., A Member of the Roche Group, South San Francisco, California 94080, United States. ORCID
  6. Michael E Kopach: Eli Lilly and Company, 1400 West Raymond Street, Indianapolis, Indiana 46285, United States.
  7. Heewon Lee: Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States.
  8. Martin Olbrich: F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
  9. Anna L Watson: Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 4TF, United Kingdom.

Abstract

With a renewed and growing interest in therapeutic oligonucleotides across the pharmaceutical industry, pressure is increasing on drug developers to take more seriously the sustainability ramifications of this modality. With 12 oligonucleotide drugs reaching the market to date and hundreds more in clinical trials and preclinical development, the current state of the art in oligonucleotide production poses a waste and cost burden to manufacturers. Legacy technologies make use of large volumes of hazardous reagents and solvents, as well as energy-intensive processes in synthesis, purification, and isolation. In 2016, the American Chemical Society (ACS) Green Chemistry Institute Pharmaceutical Roundtable (GCIPR) identified the development of greener processes for oligonucleotide Active Pharmaceutical Ingredients (APIs) as a critical unmet need. As a result, the Roundtable formed a focus team with the remit of identifying green chemistry and engineering improvements that would make oligonucleotide production more sustainable. In this Perspective, we summarize the present challenges in oligonucleotide synthesis, purification, and isolation; highlight potential solutions; and encourage synergies between academia; contract research, development and manufacturing organizations; and the pharmaceutical industry. A critical part of our assessment includes Process Mass Intensity (PMI) data from multiple companies to provide preliminary baseline metrics for current oligonucleotide manufacturing processes.

References

  1. Curr Protoc Nucleic Acid Chem. 2019 Jun;77(1):e82 [PMID: 30920171]
  2. Biotechniques. 2009 Aug;47(2):701-2 [PMID: 19737134]
  3. J Am Chem Soc. 2008 Nov 26;130(47):16031-7 [PMID: 18980312]
  4. Biotechnol Bioeng. 2007 Dec 1;98(5):1043-55 [PMID: 17570708]
  5. J Org Chem. 2019 Apr 19;84(8):4615-4628 [PMID: 30900880]
  6. Sci Adv. 2018 Oct 17;4(10):eaat3386 [PMID: 30345352]
  7. Nat Biotechnol. 2017 Mar;35(3):238-248 [PMID: 28244990]
  8. Science. 2018 Sep 21;361(6408):1234-1238 [PMID: 30072577]
  9. Drugs. 2018 Oct;78(15):1625-1631 [PMID: 30251172]
  10. N Biotechnol. 2019 Mar 25;49:37-42 [PMID: 30121383]
  11. Nat Biotechnol. 2018 Aug;36(7):645-650 [PMID: 29912208]
  12. J Med Chem. 2016 Nov 10;59(21):9645-9667 [PMID: 27434100]
  13. ACS Synth Biol. 2020 Feb 21;9(2):283-293 [PMID: 31895546]
  14. Biochim Biophys Acta. 1972 Mar 14;262(2):116-24 [PMID: 4336092]
  15. Nat Biotechnol. 2017 Sep;35(9):845-851 [PMID: 28829437]
  16. J Org Chem. 2018 Oct 5;83(19):11577-11585 [PMID: 30179468]
  17. Nat Biotechnol. 2017 Mar;35(3):222-229 [PMID: 28244992]
  18. J Chromatogr A. 2001 Jul 20;923(1-2):65-73 [PMID: 11510561]
  19. Chem Commun (Camb). 2017 Jan 3;53(3):541-544 [PMID: 27966701]
  20. Biotechnol Prog. 2000 Nov-Dec;16(6):1064-70 [PMID: 11101335]
  21. Expert Opin Biol Ther. 2013 Jun;13(6):875-88 [PMID: 23451977]
  22. Nucleic Acids Res. 1996 Aug 1;24(15):3048-52 [PMID: 8760892]
  23. Nucleic Acid Ther. 2020 Aug;30(4):189-197 [PMID: 32379529]
  24. Chembiochem. 2019 Apr 1;20(7):860-871 [PMID: 30451377]
  25. Bioorg Med Chem. 1999 Mar;7(3):435-9 [PMID: 10220029]
  26. Nucleic Acids Res. 1996 Aug 1;24(15):3053-8 [PMID: 8760893]

MeSH Term

Drug Industry
Oligonucleotides
Solvents

Chemicals

Oligonucleotides
Solvents

Word Cloud

Created with Highcharts 10.0.0oligonucleotidedevelopmentprocessespharmaceuticalindustrycurrentproductionmakesynthesispurificationisolationPharmaceuticalRoundtablecriticalmanufacturingrenewedgrowinginteresttherapeuticoligonucleotidesacrosspressureincreasingdrugdeveloperstakeseriouslysustainabilityramificationsmodality12drugsreachingmarketdatehundredsclinicaltrialspreclinicalstateartposeswastecostburdenmanufacturersLegacytechnologiesuselargevolumeshazardousreagentssolventswellenergy-intensive2016AmericanChemicalSocietyACSGreenChemistryInstituteGCIPRidentifiedgreenerActiveIngredientsAPIsunmetneedresultformedfocusteamremitidentifyinggreenchemistryengineeringimprovementssustainablePerspectivesummarizepresentchallengeshighlightpotentialsolutionsencouragesynergiesacademiacontractresearchorganizationspartassessmentincludesProcessMassIntensityPMIdatamultiplecompaniesprovidepreliminarybaselinemetricsSustainabilityChallengesOpportunitiesOligonucleotideManufacturing

Similar Articles

Cited By