Ensemble Estimation of Information Divergence .

Kevin R Moon, Kumar Sricharan, Kristjan Greenewald, Alfred O Hero
Author Information
  1. Kevin R Moon: Genetics Department and Applied Math Program, Yale University, New Haven, CT 06520, USA.
  2. Kumar Sricharan: Intuit Inc., Mountain View, CA 94043, USA.
  3. Kristjan Greenewald: IBM Research, Cambridge, MA 02142, USA.
  4. Alfred O Hero: Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI 48109, USA. ORCID

Abstract

Recent work has focused on the problem of nonparametric estimation of information divergence functionals between two continuous random variables. Many existing approaches require either restrictive assumptions about the density support set or difficult calculations at the support set boundary which must be known a priori. The mean squared error (MSE) convergence rate of a leave-one-out kernel density plug-in divergence functional estimator for general bounded density support sets is derived where knowledge of the support boundary, and therefore, the boundary correction is not required. The theory of optimally weighted ensemble estimation is generalized to derive a divergence estimator that achieves the parametric rate when the densities are sufficiently smooth. Guidelines for the tuning parameter selection and the asymptotic distribution of this estimator are provided. Based on the theory, an empirical estimator of Rényi-α divergence is proposed that greatly outperforms the standard kernel density plug-in estimator in terms of mean squared error, especially in high dimensions. The estimator is shown to be robust to the choice of tuning parameters. We show extensive simulation results that verify the theoretical results of our paper. Finally, we apply the proposed estimator to estimate the bounds on the Bayes error rate of a cell classification problem.

Keywords

References

  1. Proc IEEE Int Conf Acoust Speech Signal Process. 2016 Mar;2016:6290-6294 [PMID: 27453693]
  2. Cell. 2018 Jul 26;174(3):716-729.e27 [PMID: 29961576]
  3. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361 [PMID: 27899662]
  4. Cell. 2015 Dec 17;163(7):1663-77 [PMID: 26627738]
  5. Neural Comput. 2002 Aug;14(8):1859-86 [PMID: 12180405]
  6. Entropy (Basel). 2018 Apr 30;20(5): [PMID: 33265419]
  7. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  8. IEEE Trans Med Imaging. 2011 Feb;30(2):475-83 [PMID: 20952336]
  9. Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62 [PMID: 26476454]
  10. IEEE Trans Inf Theory. 2015 May;61(5):2835-2885 [PMID: 29375152]
  11. IEEE Trans Signal Process. 2016 Feb 1;64(3):580-591 [PMID: 26807014]
  12. IEEE Trans Inf Theory. 2013 Jul;59(7):4374-4388 [PMID: 25897177]

Grants

  1. CCF-1217880/National Science Foundation
  2. W911NF-15-1-0479/Army Research Office

Word Cloud

Created with Highcharts 10.0.0estimatordivergencedensitysupporterrorrateestimationboundaryproblemnonparametricsetmeansquaredconvergencekernelplug-intheorytuningproposedresultsRecentworkfocusedinformationfunctionalstwocontinuousrandomvariablesManyexistingapproachesrequireeitherrestrictiveassumptionsdifficultcalculationsmustknownprioriMSEleave-one-outfunctionalgeneralboundedsetsderivedknowledgethereforecorrectionrequiredoptimallyweightedensemblegeneralizedderiveachievesparametricdensitiessufficientlysmoothGuidelinesparameterselectionasymptoticdistributionprovidedBasedempiricalRényi-αgreatlyoutperformsstandardtermsespeciallyhighdimensionsshownrobustchoiceparametersshowextensivesimulationverifytheoreticalpaperFinallyapplyestimateboundsBayescellclassificationEnsembleEstimationInformationDivergencebayescentrallimittheoremratesdifferentialentropy

Similar Articles

Cited By