The Co-existence of Different Synchronization Types in Fractional-order Discrete-time Chaotic Systems with Non-identical Dimensions and Orders.

Samir Bendoukha, Adel Ouannas, Xiong Wang, Amina-Aicha Khennaoui, Viet-Thanh Pham, Giuseppe Grassi, Van Van Huynh
Author Information
  1. Samir Bendoukha: Electrical Engineering Department, College of Engineering at Yanbu, Taibah University, Medina 42353, Saudi Arabia. ORCID
  2. Adel Ouannas: Department of Mathematics and Computer Science, University of Larbi Tebessi, Tebessa 12002, Algeria.
  3. Xiong Wang: Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
  4. Amina-Aicha Khennaoui: Department of Mathematics and Computer Sciences, University of Larbi Ben M'hidi, Oum El Bouaghi 04000, Algeria.
  5. Viet-Thanh Pham: Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
  6. Giuseppe Grassi: Dipartimento Ingegneria Innovazione, Universita del Salento, 73100 Lecce, Italy.
  7. Van Van Huynh: Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

Abstract

This paper is concerned with the co-existence of different synchronization types for fractional-order discrete-time chaotic systems with different dimensions. In particular, we show that through appropriate nonlinear control, projective synchronization (PS), full state hybrid projective synchronization (FSHPS), and generalized synchronization (GS) can be achieved simultaneously. A second nonlinear control scheme is developed whereby inverse full state hybrid projective synchronization (IFSHPS) and inverse generalized synchronization (IGS) are shown to co-exist. Numerical examples are presented to confirm the findings.

Keywords

References

  1. Chaos. 1995 Mar;5(1):110-117 [PMID: 12780163]
  2. Entropy (Basel). 2018 Apr 27;20(5): [PMID: 33265412]
  3. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2297-301 [PMID: 11607165]
  4. Entropy (Basel). 2018 Jul 15;20(7): [PMID: 33265619]
  5. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Apr;51(4):R2712-R2714 [PMID: 9963078]
  6. Phys Rev Lett. 1990 Feb 19;64(8):821-824 [PMID: 10042089]
  7. Entropy (Basel). 2018 Jan 27;20(2): [PMID: 33265177]

Grants

  1. No. 61601306/National Natural Science Foundation of China
  2. No. 20150215145C/Shenzhen Overseas High Level Talent Peacock Project Fund

Word Cloud

Created with Highcharts 10.0.0synchronizationprojectivefullstatehybridgeneralizedinversedifferentnonlinearcontrolpaperconcernedco-existencetypesfractional-orderdiscrete-timechaoticsystemsdimensionsparticularshowappropriatePSFSHPSGScanachievedsimultaneouslysecondschemedevelopedwherebyIFSHPSIGSshownco-existNumericalexamplespresentedconfirmfindingsCo-existenceDifferentSynchronizationTypesFractional-orderDiscrete-timeChaoticSystemsNon-identicalDimensionsOrdersentropyfractionaldiscretechaos

Similar Articles

Cited By (1)