Screening Model for Estimating Undiagnosed Diabetes among People with a Family History of Diabetes Mellitus: A KNHANES-Based Study.

Kwang Sun Ryu, Ha Ye Jin Kang, Sang Won Lee, Hyun Woo Park, Na Young You, Jae Ho Kim, Yul Hwangbo, Kui Son Choi, Hyo Soung Cha
Author Information
  1. Kwang Sun Ryu: Cancer Big Data Center, National Cancer Center, Goyang-si 10408, Gyeonggi-do, Korea. ORCID
  2. Ha Ye Jin Kang: Cancer Big Data Center, National Cancer Center, Goyang-si 10408, Gyeonggi-do, Korea. ORCID
  3. Sang Won Lee: Cancer Big Data Center, National Cancer Center, Goyang-si 10408, Gyeonggi-do, Korea.
  4. Hyun Woo Park: Healthcare AI Team, National Cancer Center, Goyang-si 10408, Gyeonggi-do, Korea.
  5. Na Young You: Cancer Big Data Center, National Cancer Center, Goyang-si 10408, Gyeonggi-do, Korea. ORCID
  6. Jae Ho Kim: Cancer Big Data Center, National Cancer Center, Goyang-si 10408, Gyeonggi-do, Korea.
  7. Yul Hwangbo: Healthcare AI Team, National Cancer Center, Goyang-si 10408, Gyeonggi-do, Korea. ORCID
  8. Kui Son Choi: Cancer Big Data Center, National Cancer Center, Goyang-si 10408, Gyeonggi-do, Korea. ORCID
  9. Hyo Soung Cha: Cancer Big Data Center, National Cancer Center, Goyang-si 10408, Gyeonggi-do, Korea. ORCID

Abstract

A screening model for estimating undiagnosed diabetes mellitus (UDM) is important for early medical care. There is minimal research and a serious lack of screening models for people with a family history of diabetes (FHD), especially one which incorporates gender characteristics. Therefore, the primary objective of our study was to develop a screening model for estimating UDM among people with FHD and enable its validation. We used data from the Korean National Health and Nutrition Examination Survey (KNHANES). KNAHNES (2010-2016) was used as a developmental cohort (n = 5939) and was then evaluated in a validation cohort (n = 1047) KNHANES (2017). We developed the screening model for UDM in male (SMM), female (SMF), and male and female combined (SMP) with FHD using backward stepwise logistic regression analysis. The SMM and SMF showed an appropriate performance (area under curve (AUC) = 76.2% and 77.9%) compared with SMP (AUC = 72.9%) in the validation cohort. Consequently, simple screening models were developed and validated, for the estimation of UDM among patients in the FHD group, which is expected to reduce the burden on the national health care system.

Keywords

References

  1. Sci Rep. 2017 Feb 17;7:42685 [PMID: 28209984]
  2. Hypertens Res. 2015 Nov;38(11):783-9 [PMID: 26178151]
  3. Diabetes Care. 2009 Nov;32(11):2123-32 [PMID: 19875607]
  4. Hypertens Res. 2017 Jul;40(7):710-716 [PMID: 28250411]
  5. Diabetes Care. 2012 Aug;35(8):1723-30 [PMID: 22688547]
  6. Diabetes Care. 2007 Dec;30(12):3105-9 [PMID: 17712026]
  7. Korean J Intern Med. 2009 Sep;24(3):180-2 [PMID: 19721852]
  8. South Med J. 2015 Jan;108(1):29-36 [PMID: 25580754]
  9. BMC Public Health. 2012 Aug 09;12:631 [PMID: 22877354]
  10. Epidemiol Rev. 2007;29:115-28 [PMID: 17494056]
  11. Diabetes Care. 2006 Aug;29(8):1872-7 [PMID: 16873795]
  12. Korean J Intern Med. 2009 Sep;24(3):183-9 [PMID: 19721853]
  13. J Clin Endocrinol Metab. 1999 Jun;84(6):1862-6 [PMID: 10372676]
  14. Biomolecules. 2015 Sep 29;5(4):2223-46 [PMID: 26426068]
  15. Diabet Med. 2010 Mar;27(3):274-81 [PMID: 20536489]
  16. Diabetes Care. 2004 Mar;27(3):727-33 [PMID: 14988293]
  17. Nat Rev Dis Primers. 2017 Mar 30;3:17016 [PMID: 28358037]
  18. Hypertens Res. 2018 Jun;41(6):389-393 [PMID: 29556093]
  19. BMC Endocr Disord. 2016 Jul 25;16(1):42 [PMID: 27456082]
  20. Am J Epidemiol. 1997 Aug 1;146(3):214-22 [PMID: 9247005]
  21. N Engl J Med. 2001 Sep 13;345(11):790-7 [PMID: 11556298]
  22. Hypertension. 1995 Mar;25(3):305-13 [PMID: 7875754]
  23. Diabetes Care. 1999 Feb;22(2):213-9 [PMID: 10333936]
  24. Diabetes Care. 2004 Dec;27(12):2806-12 [PMID: 15562189]
  25. Biol Sex Differ. 2012 Mar 14;3(1):7 [PMID: 22417477]
  26. Pediatr Diabetes. 2018 Feb;19(1):7-10 [PMID: 29193499]
  27. Clin Exp Hypertens. 2004 Oct-Nov;26(7-8):621-8 [PMID: 15702616]
  28. Diabetes Care. 2005 Mar;28(3):719-25 [PMID: 15735217]
  29. PLoS One. 2015 Nov 11;10(11):e0142779 [PMID: 26558900]
  30. Circulation. 2019 May 7;139(19):2228-2237 [PMID: 30955347]
  31. Diabetes Care. 2008 Sep;31(9):1889-91 [PMID: 18556342]
  32. Diabetes Care. 2008 May;31(5):1040-5 [PMID: 18070993]
  33. Int J Epidemiol. 1997 Jun;26(3):542-50 [PMID: 9222779]
  34. Am J Epidemiol. 2010 May 15;171(10):1079-89 [PMID: 20421221]
  35. JAMA. 1999 Jul 21;282(3):279-80 [PMID: 10422998]

MeSH Term

Area Under Curve
Diabetes Mellitus
Diabetes Mellitus, Type 2
Female
Humans
Male
Mass Screening
Nutrition Surveys
Risk Factors

Word Cloud

Created with Highcharts 10.0.0screeningmodeldiabetesUDMFHD=amongvalidationcohortestimatingundiagnosedmellituscaremodelspeoplefamilyhistoryusedKNHANESndevelopedmaleSMMfemaleSMFSMPAUC9%DiabetesimportantearlymedicalminimalresearchseriouslackespeciallyoneincorporatesgendercharacteristicsThereforeprimaryobjectivestudydevelopenabledataKoreanNationalHealthNutritionExaminationSurveyKNAHNES2010-2016developmental5939evaluated10472017combinedusingbackwardstepwiselogisticregressionanalysisshowedappropriateperformanceareacurve762%77compared72ConsequentlysimplevalidatedestimationpatientsgroupexpectedreduceburdennationalhealthsystemScreeningModelEstimatingUndiagnosedPeopleFamilyHistoryMellitus:KNHANES-BasedStudy

Similar Articles

Cited By