Transcriptomic analysis of Procambarus clarkii affected by "Black May" disease.

Guoqing Shen, Xiao Zhang, Jie Gong, Yang Wang, Pengdan Huang, Yan Shui, Zenghong Xu, Huaishun Shen
Author Information
  1. Guoqing Shen: Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China.
  2. Xiao Zhang: Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China.
  3. Jie Gong: Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China.
  4. Yang Wang: Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China.
  5. Pengdan Huang: Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi, 214081, Jiangsu, China.
  6. Yan Shui: Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi, 214081, Jiangsu, China.
  7. Zenghong Xu: Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi, 214081, Jiangsu, China.
  8. Huaishun Shen: Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China. shenhuaishun@ffrc.cn.

Abstract

Each year from April to May, high mortality rates are reported in red swamp crayfish (Procambarus clarkii) cultured in Jiangsu and other regions, in China, and this phenomenon has come to be known as "Black May" disease (BMD). Therefore, in order to investigate the possible causes of this disease, this study gathered BMD-affected P. clarkii samples and performed transcriptome analysis on hepatopancreas, gill, and muscle tissues. A total of 19,995,164, 149,212,804, and 222,053,848 clean reads were respectively obtained from the gills, muscle, and hepatopancreas of BMD-affected P. clarkii, and 114,024 unigenes were identified. The number of differentially expressed genes (DEGs) in gill, muscle, and hepatopancreas was 1703, 964, and 476, respectively. GO and KEGG enrichment analyses of the DEGs were then conducted. Based on KEGG pathway enrichment analysis, the most significantly differentially expressed pathways were mainly those involved with metabolism, human disease, and cellular processes. Further analysis of the significantly DEGs revealed that they were mainly related to the mitochondrial-mediated apoptosis pathway and that the expression of these DEGs was mostly down-regulated. Moreover, the expression of genes related to immune and metabolism-related pathways was also significantly down-regulated, and these significantly-inhibited pathways were the likely causes of P. clarkii death. Therefore, our results provide a basis for the identification of BMD causes.

References

  1. Trends Genet. 2018 Nov;34(11):832-845 [PMID: 30195580]
  2. Dev Comp Immunol. 2019 Dec;101:103452 [PMID: 31319087]
  3. Bioinformatics. 2011 Sep 1;27(17):2325-9 [PMID: 21697122]
  4. Fish Shellfish Immunol. 2020 Jun;101:66-77 [PMID: 32213315]
  5. Dev Comp Immunol. 2018 Feb;79:21-30 [PMID: 28986214]
  6. Front Genet. 2020 Feb 18;11:71 [PMID: 32133029]
  7. Nat Immunol. 2003 May;4(5):410-5 [PMID: 12719730]
  8. Fish Shellfish Immunol. 2001 Feb;11(2):143-53 [PMID: 11308076]
  9. Fish Shellfish Immunol. 2018 Dec;83:397-405 [PMID: 30244087]
  10. Annu Rev Biochem. 1985;54:1015-69 [PMID: 2862839]
  11. Fish Shellfish Immunol. 2013 Apr;34(4):1011-7 [PMID: 22683516]
  12. J Invertebr Pathol. 2011 Jan;106(1):54-70 [PMID: 21215355]
  13. Yeast. 2000 Apr;17(1):48-55 [PMID: 10928937]
  14. Tumour Biol. 2016 Feb;37(2):1427-36 [PMID: 26631036]
  15. Fish Shellfish Immunol. 2007 Sep;23(3):601-13 [PMID: 17467295]
  16. Insect Mol Biol. 2004 Apr;13(2):165-77 [PMID: 15056364]
  17. Dev Comp Immunol. 2013 Jan-Feb;39(1-2):11-26 [PMID: 22484214]
  18. Fish Shellfish Immunol. 2019 Jan;84:885-893 [PMID: 30391295]
  19. Nat Rev Cancer. 2002 Apr;2(4):277-88 [PMID: 12001989]
  20. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  21. Chemosphere. 2019 Oct;233:796-808 [PMID: 31200138]
  22. Nucleic Acids Res. 2019 Jan 8;47(D1):D590-D595 [PMID: 30321428]
  23. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  24. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  25. Fish Shellfish Immunol. 2019 Mar;86:1009-1018 [PMID: 30586633]
  26. Amino Acids. 2020 Feb;52(2):161-169 [PMID: 31654209]
  27. Dev Comp Immunol. 2008;32(6):706-15 [PMID: 18068223]
  28. J Mol Biol. 2018 Oct 26;430(22):4580-4591 [PMID: 29981746]
  29. Ecotoxicol Environ Saf. 2019 Oct 30;182:109388 [PMID: 31299477]
  30. J Virol. 2011 Dec;85(24):12919-28 [PMID: 21976644]
  31. Sci Rep. 2020 Jul 29;10(1):12679 [PMID: 32728087]
  32. Genome Biol. 2010;11(2):R14 [PMID: 20132535]
  33. Trends Microbiol. 1999 Apr;7(4):160-5 [PMID: 10217831]
  34. Front Immunol. 2019 Jul 30;10:1785 [PMID: 31417561]
  35. PLoS One. 2014 Oct 22;9(10):e110548 [PMID: 25338101]
  36. Sci Rep. 2016 Jun 10;6:26780 [PMID: 27283359]
  37. Front Immunol. 2020 Aug 28;11:1904 [PMID: 32983114]
  38. Fish Shellfish Immunol. 2020 Mar;98:766-772 [PMID: 31734284]
  39. PLoS One. 2020 Feb 21;15(2):e0228623 [PMID: 32084152]
  40. Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59 [PMID: 18097445]
  41. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  42. Fish Shellfish Immunol. 2017 Dec;71:144-150 [PMID: 29017948]
  43. Cell Death Differ. 2008 Sep;15(9):1339-49 [PMID: 18566602]
  44. J Fish Dis. 2019 Apr;42(4):497-510 [PMID: 30742312]
  45. Fish Shellfish Immunol. 2010 Jul;29(1):94-103 [PMID: 20202479]
  46. Ion Channels. 1996;4:169-202 [PMID: 8744209]
  47. Arch Virol. 2004 Jul;149(7):1293-307 [PMID: 15221532]
  48. Dis Aquat Organ. 2012 Dec 3;102(1):13-21 [PMID: 23209074]
  49. Fish Shellfish Immunol. 2019 Jun;89:458-467 [PMID: 30954523]
  50. Bioinformatics. 2005 Oct 1;21(19):3787-93 [PMID: 15817693]
  51. J Invertebr Pathol. 2012 Jun;110(2):141-57 [PMID: 22434002]
  52. Nat Rev Cancer. 2002 Sep;2(9):647-56 [PMID: 12209154]
  53. Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4 [PMID: 18077471]
  54. BMC Genomics. 2019 Oct 22;20(1):762 [PMID: 31640560]
  55. Dev Comp Immunol. 2007;31(7):672-86 [PMID: 17188354]
  56. Acta Virol. 2000 Dec;44(6):371-4 [PMID: 11332281]
  57. Fish Shellfish Immunol. 2019 Dec;95:140-150 [PMID: 31629063]
  58. Antiviral Res. 2014 Aug;108:129-41 [PMID: 24886688]
  59. Fish Shellfish Immunol. 2015 Oct;46(2):516-22 [PMID: 26220644]
  60. J Cell Biol. 2001 Sep 3;154(5):961-72 [PMID: 11524434]
  61. J Bioenerg Biomembr. 2008 Jun;40(3):163-70 [PMID: 18654841]
  62. Front Immunol. 2014 Sep 23;5:459 [PMID: 25295041]

MeSH Term

Animal Diseases
Animals
Apoptosis
Astacoidea
China
Down-Regulation
Gene Expression Profiling
Gene Ontology
Gills
Hepatopancreas
Mitochondria
Muscles
RNA-Seq
Signal Transduction
Transcriptome

Word Cloud

Created with Highcharts 10.0.0clarkiidiseaseanalysisDEGscausesPhepatopancreasmusclesignificantlypathwaysProcambarus"BlackMay"BMDThereforeBMD-affectedgillrespectivelydifferentiallyexpressedgenesKEGGenrichmentpathwaymainlyrelatedexpressiondown-regulatedyearAprilMayhighmortalityratesreportedredswampcrayfishculturedJiangsuregionsChinaphenomenoncomeknownorderinvestigatepossiblestudygatheredsamplesperformedtranscriptometissuestotal19995164149212804222053848cleanreadsobtainedgills114024unigenesidentifiednumber1703964476GOanalysesconductedBasedinvolvedmetabolismhumancellularprocessesrevealedmitochondrial-mediatedapoptosismostlyMoreoverimmunemetabolism-relatedalsosignificantly-inhibitedlikelydeathresultsprovidebasisidentificationTranscriptomicaffected

Similar Articles

Cited By