Genome Size Variation and Comparative Genomics Reveal Intraspecific Diversity in .

Julien Boutte, Loeiz Maillet, Thomas Chaussepied, Sébastien Letort, Jean-Marc Aury, Caroline Belser, Franz Boideau, Anael Brunet, Olivier Coriton, Gwenaëlle Deniot, Cyril Falentin, Virginie Huteau, Maryse Lodé-Taburel, Jérôme Morice, Gwenn Trotoux, Anne-Marie Chèvre, Mathieu Rousseau-Gueutin, Julie Ferreira de Carvalho
Author Information
  1. Julien Boutte: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  2. Loeiz Maillet: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  3. Thomas Chaussepied: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  4. Sébastien Letort: IRISA/INRIA, Campus de Beaulieu, Rennes, France.
  5. Jean-Marc Aury: Génomique Métabolique, Genoscope, Institut de biologie François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.
  6. Caroline Belser: Génomique Métabolique, Genoscope, Institut de biologie François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.
  7. Franz Boideau: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  8. Anael Brunet: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  9. Olivier Coriton: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  10. Gwenaëlle Deniot: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  11. Cyril Falentin: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  12. Virginie Huteau: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  13. Maryse Lodé-Taburel: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  14. Jérôme Morice: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  15. Gwenn Trotoux: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  16. Anne-Marie Chèvre: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  17. Mathieu Rousseau-Gueutin: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
  18. Julie Ferreira de Carvalho: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.

Abstract

Traditionally, reference genomes in crop species rely on the assembly of one accession, thus occulting most of intraspecific diversity. However, rearrangements, gene duplications, and transposable element content may have a large impact on the genomic structure, which could generate new phenotypic traits. Comparing two genomes recently sequenced and assembled using long-read technology and optical mapping, we investigated structural variants and repetitive content between the two accessions and genome size variation among a core collection. We explored the structural consequences of the presence of large repeated sequences in 'Z1' genome vs. the 'Chiifu' genome, using comparative genomics and cytogenetic approaches. First, we showed that large genomic variants on chromosomes A05, A06, A09, and A10 are due to large insertions and inversions when comparing 'Z1' and 'Chiifu' at the origin of important length differences in some chromosomes. For instance, lengths of 'Z1' and 'Chiifu' A06 chromosomes were estimated to be 55 and 29 Mb, respectively. To validate these observations, we compared using fluorescent hybridization (FISH) the two A06 chromosomes present in an F1 hybrid produced by crossing these two varieties. We confirmed a length difference of 17.6% between the A06 chromosomes of 'Z1' compared to 'Chiifu.' Alternatively, using a copy number variation approach, we were able to quantify the presence of a higher number of rDNA and gypsy elements in 'Z1' genome compared to 'Chiifu' on different chromosomes including A06. Using flow cytometry, the total genome size of 12 accessions corresponding to a available core collection was estimated and revealed a genome size variation of up to 16% between these accessions as well as some shared inversions. This study revealed the contribution of long-read sequencing of new accessions belonging to different cultigroups of and highlighted the potential impact of differential insertion of repeat elements and inversions of large genomic regions in genome size intraspecific variability.

Keywords

References

  1. Curr Biol. 2006 Oct 24;16(20):R872-3 [PMID: 17055967]
  2. Nucleic Acids Res. 1979 Dec 11;7(7):1869-85 [PMID: 537913]
  3. Hortic Res. 2018 Aug 15;5:50 [PMID: 30131865]
  4. Hortic Res. 2014 May 21;1:14024 [PMID: 26504539]
  5. Front Plant Sci. 2017 Feb 02;8:111 [PMID: 28210266]
  6. Plant J. 2017 Jun;90(5):1007-1013 [PMID: 28231383]
  7. Curr Opin Plant Biol. 2020 Apr;54:18-25 [PMID: 31982844]
  8. Plant Biotechnol J. 2020 Oct 19;: [PMID: 33073461]
  9. Am Nat. 2000 Dec;156(6):590-605 [PMID: 29592543]
  10. Nucleic Acids Res. 2017 Jul 3;45(W1):W122-W129 [PMID: 28472432]
  11. Chromosoma. 2011 Dec;120(6):557-71 [PMID: 21785942]
  12. Chromosoma. 2000 Jul;109(4):245-58 [PMID: 10968253]
  13. Trends Ecol Evol. 2000 Mar;15(3):95-99 [PMID: 10675923]
  14. PLoS One. 2011 Jan 31;6(1):e16526 [PMID: 21304975]
  15. Front Plant Sci. 2016 Apr 21;7:525 [PMID: 27148342]
  16. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  17. PLoS One. 2014 May 02;9(5):e91929 [PMID: 24786468]
  18. Elife. 2016 Jun 03;5: [PMID: 27258693]
  19. Genome Biol. 2004;5(2):R12 [PMID: 14759262]
  20. Nat Commun. 2020 Feb 20;11(1):989 [PMID: 32080174]
  21. Plant J. 2013 Oct;76(2):211-22 [PMID: 23869625]
  22. Ann Bot. 2005 Jan;95(1):229-35 [PMID: 15596470]
  23. Nature. 2018 May;557(7703):43-49 [PMID: 29695866]
  24. Genome. 2000 Jun;43(3):574-9 [PMID: 10902723]
  25. Plant Genome. 2019 Jun;12(2): [PMID: 31290926]
  26. Genome Biol. 2015 Dec 10;16:262 [PMID: 26653025]
  27. Nat Plants. 2020 Jan;6(1):34-45 [PMID: 31932676]
  28. Genetica. 1999;107(1-3):139-48 [PMID: 10952207]
  29. Nat Biotechnol. 2014 Oct;32(10):1045-52 [PMID: 25218520]
  30. Mol Ecol. 2017 Jul;26(13):3373-3388 [PMID: 28371014]
  31. PLoS Genet. 2015 Jan 08;11(1):e1004915 [PMID: 25569788]
  32. PLoS Comput Biol. 2005 Jul;1(2):166-75 [PMID: 16110336]
  33. Ann Bot. 2017 Jan;119(1):13-26 [PMID: 27707747]
  34. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6603-7 [PMID: 10823912]
  35. Nat Genet. 2012 Jun 03;44(7):803-7 [PMID: 22660545]
  36. Nat Commun. 2015 Apr 16;6:6914 [PMID: 25881062]
  37. Plant Biotechnol J. 2020 Apr;18(4):969-982 [PMID: 31553100]
  38. EMBO J. 1995 May 15;14(10):2350-63 [PMID: 7774593]
  39. Nat Genet. 2011 Aug 28;43(10):1035-9 [PMID: 21873998]
  40. Genome Biol. 2014;15(11):506 [PMID: 25468217]
  41. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  42. Nat Genet. 2010 Dec;42(12):1053-9 [PMID: 21076406]
  43. J Hered. 2014 Jul-Aug;105(4):555-565 [PMID: 24714366]
  44. Plant J. 2016 Oct;88(2):159-178 [PMID: 27436134]
  45. New Phytol. 2016 Jul;211(1):288-99 [PMID: 26871271]
  46. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  47. Nat Genet. 2018 Feb;50(2):278-284 [PMID: 29335547]
  48. Nat Genet. 2016 Oct;48(10):1218-24 [PMID: 27526322]
  49. Ann Bot. 2017 Aug 1;120(2):195-207 [PMID: 28854566]
  50. Sci Data. 2016 Dec 20;3:160119 [PMID: 27996963]
  51. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  52. Theor Appl Genet. 1990 Apr;79(4):497-506 [PMID: 24226454]
  53. BMC Genomics. 2016 Nov 07;17(1):884 [PMID: 27821059]
  54. New Phytol. 2009 Dec;184(4):1003-15 [PMID: 19780987]
  55. Genome. 2010 Nov;53(11):884-98 [PMID: 21076504]
  56. Genetics. 2011 Jan;187(1):37-49 [PMID: 21041557]
  57. Nat Plants. 2018 Nov;4(11):879-887 [PMID: 30390080]
  58. Genome Biol. 2010;11(9):R94 [PMID: 20875114]
  59. Ann Bot. 2006 Feb;97(2):205-16 [PMID: 16357054]
  60. Nat Rev Genet. 2007 Dec;8(12):973-82 [PMID: 17984973]
  61. Trends Ecol Evol. 2016 Mar;31(3):226-236 [PMID: 26831635]
  62. Genes (Basel). 2018 May 15;9(5): [PMID: 29762547]
  63. Nat Commun. 2016 Nov 11;7:13390 [PMID: 27834372]

Word Cloud

Created with Highcharts 10.0.0genomechromosomeslarge'Z1'A06twousingaccessionssize'Chiifu'intraspecificgenomicvariationinversionscomparedelementsgenomesdiversitytransposablecontentimpactnewlong-readstructuralvariantscorecollectionpresencelengthestimatednumberdifferentrevealedTraditionallyreferencecropspeciesrelyassemblyoneaccessionthusoccultingHoweverrearrangementsgeneduplicationselementmaystructuregeneratephenotypictraitsComparingrecentlysequencedassembledtechnologyopticalmappinginvestigatedrepetitiveamongexploredconsequencesrepeatedsequencesvscomparativegenomicscytogeneticapproachesFirstshowedA05A09A10dueinsertionscomparingoriginimportantdifferencesinstancelengths5529MbrespectivelyvalidateobservationsfluorescenthybridizationFISHpresentF1hybridproducedcrossingvarietiesconfirmeddifference176%'Chiifu'AlternativelycopyapproachablequantifyhigherrDNAgypsyincludingUsingflowcytometrytotal12correspondingavailable16%wellsharedstudycontributionsequencingbelongingcultigroupshighlightedpotentialdifferentialinsertionrepeatregionsvariabilityGenomeSizeVariationComparativeGenomicsRevealIntraspecificDiversityBrassicaLTRGypsyevolutionribosomalDNA

Similar Articles

Cited By (13)