Numerical investigation of depth-sensitive diffuse reflectance and fluorescence measurements on murine subcutaneous tissue with growing solid tumors.

Evan Carrico, Tengfei Sun, Caigang Zhu
Author Information
  1. Evan Carrico: Department of Electrical Engineering, University of Kentucky, Lexington, KY 40506, USA.
  2. Tengfei Sun: Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA.
  3. Caigang Zhu: Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA.

Abstract

In most biomedical optical spectroscopy platforms, a fiber-probe consisting of single or multiple illumination and collection fibers was commonly used for the delivery of illuminating light and the collection of emitted light. Typically, the signals from all collection fibers were combined and then sampled to characterize tissue samples. Such simple averaged optical measurements may induce significant errors for tumor characterization, especially in longitudinal studies where the tumor size and location vary with tumor stages. In this study, we utilized the Monte Carlo technique to optimize the fiber-probe geometries of a spectroscopy platform to enable tumor-sensitive diffuse reflectance and fluorescence measurements on murine subcutaneous tissues with growing solid tumors that have different sizes and depths. Our data showed that depth-sensitive techniques offer improved sensitivity in tumor detection compared to the simple averaged approach in both reflectance and fluorescence measurements. Through the numerical studies, we optimized the source-detector distances, fiber diameters, and numerical apertures for sensitive measurement of small solid tumors with varying size and depth buried in murine subcutaneous tissues. Our study will advance the design of a fiber-probe in an optical spectroscopy system that can be used for longitudinal tumor metabolism and vasculature monitoring.

References

  1. IEEE Trans Biomed Eng. 2009 Apr;56(4):960-8 [PMID: 19423425]
  2. J Biomed Opt. 2018 Aug;23(8):1-14 [PMID: 30152204]
  3. Future Oncol. 2012 Mar;8(3):307-20 [PMID: 22409466]
  4. Sci Rep. 2018 Mar 8;8(1):4171 [PMID: 29520098]
  5. J Biomed Opt. 2014;19(10):107002 [PMID: 25349033]
  6. Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19494-9 [PMID: 18042710]
  7. J Biomed Opt. 2004 May-Jun;9(3):511-22 [PMID: 15189089]
  8. Plast Reconstr Surg. 2014 Aug;134(2):240e-247e [PMID: 25068346]
  9. PLoS One. 2015 Jan 30;10(1):e0117132 [PMID: 25635865]
  10. Opt Express. 2012 Dec 31;20(28):29807-22 [PMID: 23388808]
  11. J Biomed Opt. 2003 Apr;8(2):223-36 [PMID: 12683848]
  12. Appl Opt. 2006 Jul 1;45(19):4776-90 [PMID: 16799693]
  13. Clin Cancer Res. 2011 Oct 1;17(19):6250-6261 [PMID: 21844011]
  14. Opt Lett. 2015 Jul 15;40(14):3292-5 [PMID: 26176452]
  15. J Biophotonics. 2019 Apr;12(4):e201800372 [PMID: 30565420]
  16. J Biomed Opt. 2014 Aug;19(8):085006 [PMID: 25117077]
  17. Biomed Opt Express. 2018 Jun 27;9(7):3399-3412 [PMID: 29984105]
  18. Cancer Res. 2014 Sep 15;74(18):5184-94 [PMID: 25100563]
  19. Sci Rep. 2017 Oct 23;7(1):13772 [PMID: 29062013]
  20. Opt Express. 2011 Aug 29;19(18):17799-812 [PMID: 21935148]
  21. Appl Opt. 2004 May 10;43(14):2846-60 [PMID: 15143808]
  22. IEEE Trans Biomed Eng. 2008 Jan;55(1):335-9 [PMID: 18232377]
  23. J Photochem Photobiol B. 2016 Jul;160:72-8 [PMID: 27101274]
  24. J Biomed Opt. 2003 Jan;8(1):121-47 [PMID: 12542388]

Grants

  1. P20 GM121327/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0tumormeasurementsopticalspectroscopyfiber-probecollectionreflectancefluorescencemurinesubcutaneoussolidtumorsfibersusedlighttissuesimpleaveragedlongitudinalstudiessizestudydiffusetissuesgrowingdepth-sensitivenumericalbiomedicalplatformsconsistingsinglemultipleilluminationcommonlydeliveryilluminatingemittedTypicallysignalscombinedsampledcharacterizesamplesmayinducesignificanterrorscharacterizationespeciallylocationvarystagesutilizedMonteCarlotechniqueoptimizegeometriesplatformenabletumor-sensitivedifferentsizesdepthsdatashowedtechniquesofferimprovedsensitivitydetectioncomparedapproachoptimizedsource-detectordistancesfiberdiametersaperturessensitivemeasurementsmallvaryingdepthburiedwilladvancedesignsystemcanmetabolismvasculaturemonitoringNumericalinvestigation

Similar Articles

Cited By