Supramolecular nanostructures with tunable donor loading for controlled HS release.

Yin Wang, John B Matson
Author Information
  1. Yin Wang: Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
  2. John B Matson: Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.

Abstract

Hydrogen sulfide (HS), an endogenously generated and regulated signaling gas, plays a vital role in a variety of (patho)physiological processes. In the past few years, different kinds of HS-releasing compounds (often referred to as HS donors) have been developed for HS delivery, but it is still challenging to make HS donors with tunable payloads in a simple and efficient manner. Herein, a series of peptide-HS donor conjugates (PHDCs) with tunable donor loadings are designed for controlled HS release. The PHDCs self-assemble into nanoribbons with different geometries in aqueous solution. Upon addition of cysteine, these nanostructures release HS, delivering their payload into H9C2 cells, as visualized using an HS-selective fluorescent probe. Beyond imaging, studies show that the ability of PHDCs to mitigate doxorubicin-induced cardiotoxicity in H9C2 cardiomyocytes depends on their nanostructures and HS release profiles. This strategy may enable the development of sophisticated HS-releasing biomaterials for drug delivery and regenerative medicine.

Keywords

References

  1. J Am Chem Soc. 2016 May 25;138(20):6336-9 [PMID: 27172143]
  2. Cardiovasc Toxicol. 2007;7(2):122-8 [PMID: 17652816]
  3. Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):3182-7 [PMID: 24516168]
  4. Org Lett. 2014 Mar 21;16(6):1558-61 [PMID: 24575729]
  5. Biomacromolecules. 2019 Feb 11;20(2):1077-1086 [PMID: 30676716]
  6. Mol Cell Biochem. 2012 Apr;363(1-2):419-26 [PMID: 22203419]
  7. J Mater Chem B. 2018 Nov 28;6(44):7122-7128 [PMID: 32254628]
  8. Cell Physiol Biochem. 2013;32(6):1668-80 [PMID: 24356372]
  9. Crit Rev Oncol Hematol. 1991;11(1):43-64 [PMID: 1831987]
  10. Antioxid Redox Signal. 2014 Feb 10;20(5):783-93 [PMID: 23581969]
  11. Acta Biomater. 2015 Nov;27:205-213 [PMID: 26363376]
  12. Chem Commun (Camb). 2012 Jan 4;48(1):26-33 [PMID: 22080255]
  13. Int J Mol Med. 2013 Mar;31(3):644-50 [PMID: 23338126]
  14. Mol Biosyst. 2017 Aug 22;13(9):1705-1708 [PMID: 28681875]
  15. Acta Biomater. 2019 Oct 1;97:374-384 [PMID: 31352106]
  16. Mol Pharm. 2017 Apr 3;14(4):1300-1306 [PMID: 28300411]
  17. Chem Commun (Camb). 2013 May 28;49(43):4968-70 [PMID: 23612448]
  18. J Am Chem Soc. 2017 Nov 15;139(45):16365-16376 [PMID: 29056039]
  19. J Am Chem Soc. 2013 Feb 27;135(8):2907-10 [PMID: 23379791]
  20. Nat Nanotechnol. 2007 Aug;2(8):469-78 [PMID: 18654343]
  21. ACS Nano. 2018 Dec 26;12(12):12305-12314 [PMID: 30452865]
  22. Biopolymers. 2010;94(1):1-18 [PMID: 20091874]
  23. Adv Drug Deliv Rev. 2017 Feb;110-111:112-126 [PMID: 27370248]
  24. Biochem Pharmacol. 2018 Mar;149:110-123 [PMID: 29175421]
  25. J Org Chem. 2018 Nov 2;83(21):13363-13369 [PMID: 30347157]
  26. J Am Chem Soc. 2018 Nov 7;140(44):14945-14951 [PMID: 30369241]
  27. Physiol Rev. 2012 Apr;92(2):791-896 [PMID: 22535897]
  28. Org Lett. 2017 Jan 6;19(1):62-65 [PMID: 27996277]
  29. Am J Physiol Heart Circ Physiol. 2008 Aug;295(2):H801-6 [PMID: 18567706]
  30. Chem Soc Rev. 2016 Nov 7;45(22):6108-6117 [PMID: 27167579]
  31. Nat Rev Drug Discov. 2016 Mar;15(3):185-203 [PMID: 26678620]
  32. Chem Commun (Camb). 2014 Oct 14;50(80):11788-805 [PMID: 25019301]
  33. Bioconjug Chem. 2014 Jul 16;25(7):1290-300 [PMID: 24942989]
  34. Chem Commun (Camb). 2015 Aug 25;51(66):13131-4 [PMID: 26189449]
  35. Chemistry. 2014 Jan 20;20(4):1010-6 [PMID: 24339269]
  36. J Med Chem. 2016 May 26;59(10):4881-9 [PMID: 27120394]
  37. EMBO J. 2001 Nov 1;20(21):6008-16 [PMID: 11689441]
  38. J Am Chem Soc. 2011 Jan 12;133(1):15-7 [PMID: 21142018]

Grants

  1. R01 GM123508/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0HSreleasedeliverytunabledonorPHDCsnanostructuresHydrogendifferentHS-releasingdonorscontrolledH9C2sulfideendogenouslygeneratedregulatedsignalinggasplaysvitalrolevarietypathophysiologicalprocessespastyearskindscompoundsoftenreferreddevelopedstillchallengingmakepayloadssimpleefficientmannerHereinseriespeptide-HSconjugatesloadingsdesignedself-assemblenanoribbonsgeometriesaqueoussolutionUponadditioncysteinedeliveringpayloadcellsvisualizedusingHS-selectivefluorescentprobeBeyondimagingstudiesshowabilitymitigatedoxorubicin-inducedcardiotoxicitycardiomyocytesdependsprofilesstrategymayenabledevelopmentsophisticatedbiomaterialsdrugregenerativemedicineSupramolecularloadingControlledDrugSulfidePeptideSelf-assembly

Similar Articles

Cited By