Discrete Information Dynamics with Confidence via the Computational Mechanics Bootstrap: Confidence Sets and Significance Tests for Information-Dynamic Measures.

David Darmon
Author Information
  1. David Darmon: Department of Mathematics, Monmouth University, West Long Branch, NJ 07764, USA. ORCID

Abstract

Information dynamics and computational mechanics provide a suite of measures for assessing the information- and computation-theoretic properties of complex systems in the absence of mechanistic models. However, both approaches lack a core set of inferential tools needed to make them more broadly useful for analyzing real-world systems, namely reliable methods for constructing confidence sets and hypothesis tests for their underlying measures. We develop the computational mechanics bootstrap, a bootstrap method for constructing confidence sets and significance tests for information-dynamic measures via confidence distributions using estimates of ϵ -machines inferred via the Causal State Splitting Reconstruction (CSSR) algorithm. Via Monte Carlo simulation, we compare the inferential properties of the computational mechanics bootstrap to a Markov model bootstrap. The computational mechanics bootstrap is shown to have desirable inferential properties for a collection of model systems and generally outperforms the Markov model bootstrap. Finally, we perform an in silico experiment to assess the computational mechanics bootstrap's performance on a corpus of ϵ -machines derived from the activity patterns of fifteen-thousand Twitter users.

Keywords

References

  1. Acta Crystallogr A. 2013 Mar;69(Pt 2):197-206 [PMID: 23403970]
  2. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18803-8 [PMID: 20959414]
  3. Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1600-5 [PMID: 23319645]
  4. Entropy (Basel). 2018 Mar 23;20(4): [PMID: 33265312]
  5. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 2):026110 [PMID: 18352093]
  6. Chaos. 2003 Mar;13(1):25-54 [PMID: 12675408]
  7. PLoS One. 2015 Aug 12;10(8):e0134860 [PMID: 26267868]
  8. Neural Comput. 2007 Jul;19(7):1683-719 [PMID: 17521276]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011106 [PMID: 17677409]
  10. Artif Life. 2017 Winter;23(1):34-57 [PMID: 28140630]
  11. Nature. 2005 Oct 27;437(7063):1251 [PMID: 16251946]
  12. Chaos. 2011 Sep;21(3):037109 [PMID: 21974672]
  13. Neural Comput. 2010 Jan;22(1):121-57 [PMID: 19764880]
  14. Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18153-8 [PMID: 19017788]
  15. Phys Rev Lett. 1989 Jul 10;63(2):105-108 [PMID: 10040781]
  16. Neural Comput. 2005 Jul;17(7):1531-76 [PMID: 15901407]
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):042119 [PMID: 24827205]
  18. Chaos. 2019 Aug;29(8):083113 [PMID: 31472514]
  19. Phys Rev Lett. 2009 Aug 28;103(9):094101 [PMID: 19792799]
  20. Entropy (Basel). 2020 Apr 26;22(5): [PMID: 33286272]

Word Cloud

Created with Highcharts 10.0.0bootstrapcomputationalmechanicsconfidencemeasurespropertiessystemsinferentialsetstestsviamodelInformationdynamicsconstructingsignificancedistributionsϵ-machinesMarkovConfidenceinformationprovidesuiteassessinginformation-computation-theoreticcomplexabsencemechanisticmodelsHoweverapproacheslackcoresettoolsneededmakebroadlyusefulanalyzingreal-worldnamelyreliablemethodshypothesisunderlyingdevelopmethodinformation-dynamicusingestimatesinferredCausalStateSplittingReconstructionCSSRalgorithmViaMonteCarlosimulationcompareshowndesirablecollectiongenerallyoutperformsFinallyperformsilicoexperimentassessbootstrap'sperformancecorpusderivedactivitypatternsfifteen-thousandTwitterusersDiscreteDynamicsComputationalMechanicsBootstrap:SetsSignificanceTestsInformation-DynamicMeasurestheory

Similar Articles

Cited By (1)