Thermodynamics in Ecology-An Introductory Review.

S��ren Nors Nielsen, Felix M��ller, Joao Carlos Marques, Simone Bastianoni, Sven Erik J��rgensen
Author Information
  1. S��ren Nors Nielsen: Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers V��nge 15, DK-2450 Copenhagen SV, Denmark. ORCID
  2. Felix M��ller: Department of Ecosystem Management, Institute for Natural Resource Conservation, Christian-Albrechts-Universit��t zu Kiel, Olshausenstrasse 75, D-24118 Kiel, Germany.
  3. Joao Carlos Marques: MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
  4. Simone Bastianoni: Department of Earth, Environmental and Physical Sciences, University of Siena, Pian dei Mantellini 44, 53100 Siena, Italy.
  5. Sven Erik J��rgensen: Department of General Chemistry, Environmental Chemistry Section, Pharmaceutical Faculty, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen ��, Denmark.

Abstract

How to predict the evolution of ecosystems is one of the numerous questions asked of ecologists by managers and politicians. To answer this we will need to give a scientific definition to concepts like sustainability, integrity, resilience and ecosystem health. This is not an easy task, as modern ecosystem theory exemplifies. Ecosystems show a high degree of complexity, based upon a high number of compartments, interactions and regulations. The last two decades have offered proposals for interpretation of ecosystems within a framework of thermodynamics. The entrance point of such an understanding of ecosystems was delivered more than 50 years ago through Schr��dinger's and Prigogine's interpretations of living systems as "negentropy feeders" and "dissipative structures", respectively. Combining these views from the far from equilibrium thermodynamics to traditional classical thermodynamics, and ecology is obviously not going to happen without problems. There seems little reason to doubt that far from equilibrium systems, such as organisms or ecosystems, also have to obey fundamental physical principles such as mass conservation, first and second law of thermodynamics. Both have been applied in ecology since the 1950s and lately the concepts of exergy and entropy have been introduced. Exergy has recently been proposed, from several directions, as a useful indicator of the state, structure and function of the ecosystem. The proposals take two main directions, one concerned with the exergy stored in the ecosystem, the other with the exergy degraded and entropy formation. The implementation of exergy in ecology has often been explained as a translation of the Darwinian principle of "survival of the fittest" into thermodynamics. The fittest ecosystem, being the one able to use and store fluxes of energy and materials in the most efficient manner. The major problem in the transfer to ecology is that thermodynamic properties can only be calculated and not measured. Most of the supportive evidence comes from aquatic ecosystems. Results show that natural and culturally induced changes in the ecosystems, are accompanied by a variations in exergy. In brief, ecological succession is followed by an increase of exergy. This paper aims to describe the state-of-the-art in implementation of thermodynamics into ecology. This includes a brief outline of the history and the derivation of the thermodynamic functions used today. Examples of applications and results achieved up to now are given, and the importance to management laid out. Some suggestions for essential future research agendas of issues that needs resolution are given.

Keywords

References

  1. J Acoust Soc Am. 1991 Dec;90(6):2985-91 [PMID: 1787238]
  2. Philos Trans R Soc Lond B Biol Sci. 2010 May 12;365(1545):1297-302 [PMID: 20368247]
  3. Izv Akad Nauk Ser Biol. 1995 Jan-Feb;(1):5-14 [PMID: 7894316]
  4. Q Rev Biophys. 1971 Aug;4(2):107-48 [PMID: 4257403]
  5. Science. 1978 Mar 24;199(4335):1302-10 [PMID: 17840770]
  6. J Theor Biol. 1991 May 21;150(2):215-23 [PMID: 1890856]
  7. J Theor Biol. 1995 Jul 12;175(2):197-202 [PMID: 7564399]
  8. J Theor Biol. 2007 Nov 7;249(1):124-39 [PMID: 17720204]
  9. Physiol Behav. 1996 Apr-May;59(4-5):713-9 [PMID: 8778857]
  10. Brookhaven Symp Biol. 1969;22:13-24 [PMID: 5372787]
  11. Philos Trans R Soc Lond B Biol Sci. 2010 May 12;365(1545):1333-4 [PMID: 20368251]
  12. mSystems. 2016 Sep 13;1(5): [PMID: 27822558]
  13. Philos Trans R Soc Lond B Biol Sci. 2010 May 12;365(1545):1449-55 [PMID: 20368263]
  14. J Theor Biol. 1979 Sep 21;80(2):271-93 [PMID: 529804]
  15. ScientificWorldJournal. 2001 Oct 11;1:534-43 [PMID: 12805846]
  16. J Theor Biol. 1979 May 21;78(2):241-50 [PMID: 491715]
  17. J Theor Biol. 1980 May 7;84(1):31-48 [PMID: 7412322]
  18. Philos Trans A Math Phys Eng Sci. 2012 Mar 13;370(1962):1012-40 [PMID: 22291221]
  19. PLoS Comput Biol. 2019 Feb 5;15(2):e1006793 [PMID: 30721227]
  20. Mech Ageing Dev. 1993 Jan;66(3):249-56 [PMID: 8469017]
  21. Entropy (Basel). 2019 Jul 21;21(7): [PMID: 33267426]
  22. J Theor Biol. 1990 Aug 9;145(3):421-8 [PMID: 2232826]
  23. Naturwissenschaften. 2009 Jun;96(6):653-77 [PMID: 19241052]
  24. Orig Life Evol Biosph. 2012 Jun;42(2-3):153-78 [PMID: 22644566]
  25. Ecology. 2013 Oct;94(10):2138-44 [PMID: 24358698]
  26. Philos Trans R Soc Lond B Biol Sci. 2010 May 12;365(1545):1317-22 [PMID: 20368249]
  27. Bull Math Biol. 1987;49(3):321-7 [PMID: 3620744]
  28. Prog Biophys Mol Biol. 2013 Apr;111(2-3):108-15 [PMID: 23022202]
  29. J Theor Biol. 1980 Jul 21;85(2):223-45 [PMID: 7431954]
  30. J Theor Biol. 1976 Feb;56(2):363-80 [PMID: 944838]
  31. Proc Natl Acad Sci U S A. 1922 Jun;8(6):151-4 [PMID: 16576643]
  32. Tree Physiol. 2012 Jun;32(6):648-66 [PMID: 22278378]
  33. Science. 1988 Nov 25;242(4882):1132-9 [PMID: 17799729]
  34. Izv Akad Nauk Ser Biol. 1996 Jul-Aug;(4):389-97 [PMID: 8991524]
  35. Entropy (Basel). 2018 Aug 09;20(8): [PMID: 33265682]
  36. Mech Ageing Dev. 1992 Aug;65(1):65-83 [PMID: 1405791]
  37. Biochim Biophys Acta. 1994 Jul 29;1186(3):209-20 [PMID: 8043593]
  38. Philos Trans R Soc Lond B Biol Sci. 2010 May 12;365(1545):1417-27 [PMID: 20368260]
  39. Bull World Health Organ. 1992;70(2):259-67 [PMID: 1600586]
  40. Philos Trans A Math Phys Eng Sci. 2010 Jan 13;368(1910):181-96 [PMID: 19948550]
  41. Biosystems. 2013 Sep;113(3):140-3 [PMID: 23751978]
  42. Biofizika. 1989 Sep-Oct;34(5):898-900 [PMID: 2611289]
  43. J Theor Biol. 1973 Oct;41(3):535-46 [PMID: 4758118]
  44. Science. 1977 Mar 25;195(4284):1289-93 [PMID: 17738398]
  45. J Theor Biol. 2005 Dec 7;237(3):323-35 [PMID: 15978624]
  46. J Theor Biol. 2008 Apr 7;251(3):389-403 [PMID: 18237750]
  47. Science. 1978 Sep 1;201(4358):777-85 [PMID: 17738519]
  48. Nat Plants. 2020 May;6(5):444-453 [PMID: 32393882]
  49. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2102-7 [PMID: 16591943]
  50. Trends Ecol Evol. 2014 Jul;29(7):384-9 [PMID: 24863182]
  51. Heliyon. 2017 Oct 13;3(10):e00424 [PMID: 29062973]
  52. Phys Life Rev. 2019 Mar;28:83-84 [PMID: 30824391]
  53. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042708 [PMID: 25974528]
  54. Ann Rev Mar Sci. 2016;8:333-56 [PMID: 26515809]
  55. Proc Natl Acad Sci U S A. 1922 Jun;8(6):147-51 [PMID: 16576642]
  56. Experientia. 1946 Nov 15;2(11):451-3 [PMID: 20340479]
  57. J Theor Biol. 1982 Mar 21;95(2):225-45 [PMID: 6177972]
  58. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032134 [PMID: 24730817]
  59. J Theor Biol. 1989 Nov 8;141(1):11-21 [PMID: 2634157]
  60. Proc Natl Acad Sci U S A. 1974 Jan;71(1):197-9 [PMID: 16592133]
  61. Philos Trans R Soc Lond B Biol Sci. 2010 May 12;365(1545):1429-35 [PMID: 20368261]

Word Cloud

Created with Highcharts 10.0.0exergythermodynamicsecosystemsecosystemecologyentropyonesystemsconceptsshowhightwoproposalsfarequilibriumdirectionsimplementationenergythermodynamicbriefgivenmaximumpredictevolutionnumerousquestionsaskedecologistsmanagerspoliticiansanswerwillneedgivescientificdefinitionlikesustainabilityintegrityresiliencehealtheasytaskmoderntheoryexemplifiesEcosystemsdegreecomplexitybaseduponnumbercompartmentsinteractionsregulationslastdecadesofferedinterpretationwithinframeworkentrancepointunderstandingdelivered50yearsagoSchr��dinger'sPrigogine'sinterpretationsliving"negentropyfeeders""dissipativestructures"respectivelyCombiningviewstraditionalclassicalobviouslygoinghappenwithoutproblemsseemslittlereasondoubtorganismsalsoobeyfundamentalphysicalprinciplesmassconservationfirstsecondlawappliedsince1950slatelyintroducedExergyrecentlyproposedseveralusefulindicatorstatestructurefunctiontakemainconcernedstoreddegradedformationoftenexplainedtranslationDarwinianprinciple"survivalfittest"fittestableusestorefluxesmaterialsefficientmannermajorproblemtransferpropertiescancalculatedmeasuredsupportiveevidencecomesaquaticResultsnaturalculturallyinducedchangesaccompaniedvariationsecologicalsuccessionfollowedincreasepaperaimsdescribestate-of-the-artincludesoutlinehistoryderivationfunctionsusedtodayExamplesapplicationsresultsachievednowimportancemanagementlaidsuggestionsessentialfutureresearchagendasissuesneedsresolutionThermodynamicsEcology-AnIntroductoryReviewfar-from-equilibriumproductionstorageminimumdissipationnegentropylife

Similar Articles

Cited By (19)