Dissipative Structures, Organisms and Evolution.

Dilip K Kondepudi, Benjamin De Bari, James A Dixon
Author Information
  1. Dilip K Kondepudi: Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA.
  2. Benjamin De Bari: Center for Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269, USA. ORCID
  3. James A Dixon: Center for Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269, USA.

Abstract

Self-organization in nonequilibrium systems has been known for over 50 years. Under nonequilibrium conditions, the state of a system can become unstable and a transition to an organized structure can occur. Such structures include oscillating chemical reactions and spatiotemporal patterns in chemical and other systems. Because entropy and free-energy dissipating irreversible processes generate and maintain these structures, these have been called dissipative structures. Our recent research revealed that some of these structures exhibit organism-like behavior, reinforcing the earlier expectation that the study of dissipative structures will provide insights into the nature of organisms and their origin. In this article, we summarize our study of organism-like behavior in electrically and chemically driven systems. The highly complex behavior of these systems shows the time evolution to states of higher entropy production. Using these systems as an example, we present some concepts that give us an understanding of biological organisms and their evolution.

Keywords

References

  1. J Phys Chem B. 2012 Jul 12;116(27):7858-65 [PMID: 22746154]
  2. Evolution. 1994 Aug;48(4):1269-1276 [PMID: 28564446]
  3. Nature. 2001 Oct 18;413(6857):752-5 [PMID: 11607036]
  4. Naturwissenschaften. 2009 Jun;96(6):653-77 [PMID: 19241052]
  5. J Phys Chem B. 2019 May 2;123(17):3832-3840 [PMID: 30958003]
  6. Nat Mater. 2017 Aug;16(8):808-813 [PMID: 28628124]
  7. Chaos. 2017 Oct;27(10):104607 [PMID: 29092452]
  8. Langmuir. 2019 Aug 27;35(34):11066-11070 [PMID: 31381346]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):050902 [PMID: 26066110]
  10. PLoS One. 2019 May 29;14(5):e0217305 [PMID: 31141547]
  11. Chem Soc Rev. 2017 Sep 18;46(18):5647-5678 [PMID: 28703815]
  12. Nat Rev Microbiol. 2005 Mar;3(3):214-24 [PMID: 15738949]
  13. Science. 2013 Feb 22;339(6122):936-40 [PMID: 23371555]
  14. Philos Trans A Math Phys Eng Sci. 2010 Jan 13;368(1910):181-96 [PMID: 19948550]
  15. Soft Matter. 2014 Dec 7;10(45):9136-42 [PMID: 25318082]
  16. Mol Microbiol. 2001 May;40(4):779-85 [PMID: 11401685]
  17. Sci Rep. 2017 Oct 31;7(1):14437 [PMID: 29089531]
  18. J Phys Chem B. 2006 Feb 16;110(6):2482-96 [PMID: 16471845]

Word Cloud

Created with Highcharts 10.0.0structuressystemsnonequilibriumentropydissipativebehaviorevolutioncanchemicalorganism-likestudyorganismsproductionSelf-organizationknown50yearsconditionsstatesystembecomeunstabletransitionorganizedstructureoccurincludeoscillatingreactionsspatiotemporalpatternsfree-energydissipatingirreversibleprocessesgeneratemaintaincalledrecentresearchrevealedexhibitreinforcingearlierexpectationwillprovideinsightsnatureoriginarticlesummarizeelectricallychemicallydrivenhighlycomplexshowstimestateshigherUsingexamplepresentconceptsgiveusunderstandingbiologicalDissipativeStructuresOrganismsEvolutionthermodynamicsorganism

Similar Articles

Cited By (12)