Structural insights into assembly and function of the RSC chromatin remodeling complex.

Richard W Baker, Janice M Reimer, Peter J Carman, Bengi Turegun, Tsutomu Arakawa, Roberto Dominguez, Andres E Leschziner
Author Information
  1. Richard W Baker: Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.
  2. Janice M Reimer: Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.
  3. Peter J Carman: Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. ORCID
  4. Bengi Turegun: Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  5. Tsutomu Arakawa: Alliance Protein Laboratories, a Division of KBI BioPharma, San Diego, CA, USA.
  6. Roberto Dominguez: Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. ORCID
  7. Andres E Leschziner: Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA. aleschziner@health.ucsd.edu. ORCID

Abstract

SWI/SNF chromatin remodelers modify the position and spacing of nucleosomes and, in humans, are linked to cancer. To provide insights into the assembly and regulation of this protein family, we focused on a subcomplex of the Saccharomyces cerevisiae RSC comprising its ATPase (Sth1), the essential actin-related proteins (ARPs) Arp7 and Arp9 and the ARP-binding protein Rtt102. Cryo-EM and biochemical analyses of this subcomplex shows that ARP binding induces a helical conformation in the helicase-SANT-associated (HSA) domain of Sth1. Surprisingly, the ARP module is rotated 120° relative to the full RSC about a pivot point previously identified as a regulatory hub in Sth1, suggesting that large conformational changes are part of Sth1 regulation and RSC assembly. We also show that a conserved interaction between Sth1 and the nucleosome acidic patch enhances remodeling. As some cancer-associated mutations dysregulate rather than inactivate SWI/SNF remodelers, our insights into RSC complex regulation advance a mechanistic understanding of chromatin remodeling in disease states.

References

  1. Bartholomew, B. Regulating the chromatin landscape: structural and mechanistic perspectives. Annu. Rev. Biochem. 83, 671–696 (2014). [PMID: 24606138]
  2. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009). [PMID: 19355820]
  3. Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994). [PMID: 8047169]
  4. Parnell, T. J., Huff, J. T. & Cairns, B. R. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 27, 100–110 (2008). [PMID: 18059476]
  5. Cairns, B. R., Levinson, R. S., Yamamoto, K. R. & Kornberg, R. D. Essential role of Swp73p in the function of yeast Swi/Snf complex. Genes Dev. 10, 2131–2144 (1996). [PMID: 8804308]
  6. Stern, M., Jensen, R. & Herskowitz, I. Five SWI genes are required for expression of the HO gene in yeast. J. Mol. Biol. 178, 853–868 (1984). [PMID: 6436497]
  7. Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015). [PMID: 26601204]
  8. Reisman, D., Glaros, S. & Thompson, E. A. The SWI/SNF complex and cancer. Oncogene 28, 1653–1668 (2009). [DOI: 10.1038/onc.2009.4]
  9. Shain, A. H. & Pollack, J. R. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS ONE 8, e55119 (2013). [PMID: 23355908]
  10. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).
  11. Wang, X. et al. Oncogenesis caused by loss of the SNF5 tumor suppressor is dependent on activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex. Cancer Res. 69, 8094 (2009). [PMID: 19789351]
  12. Peterson, C. L., Zhao, Y. & Chait, B. T. Subunits of the yeast SWI/SNF complex are members of the actin-related protein (ARP) family. J. Biol. Chem. 273, 23641–23644 (1998). [PMID: 9726966]
  13. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998). [PMID: 9845365]
  14. Schubert, H. L. et al. Structure of an actin-related subcomplex of the SWI/SNF chromatin remodeler. Proc. Natl Acad. Sci. USA 110, 3345–3350 (2013). [PMID: 23401505]
  15. Szerlong, H. et al. The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases. Nat. Struct. Mol. Biol. 15, 469–476 (2008). [PMID: 18408732]
  16. Turegun, B., Baker, R. W., Leschziner, A. E. & Dominguez, R. Actin-related proteins regulate the RSC chromatin remodeler by weakening intramolecular interactions of the Sth1 ATPase. Commun. Biol. 1, 1 (2018). [PMID: 29809203]
  17. Clapier, C. R. et al. Regulation of DNA translocation efficiency within the chromatin remodeler RSC/Sth1 potentiates nucleosome sliding and ejection. Mol. Cell 62, 453–461 (2016). [PMID: 27153540]
  18. Liu, X., Li, M., Xia, X., Li, X. & Chen, Z. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Nature 544, 440 (2017). [PMID: 28424519]
  19. Patel, A. B. et al. Architecture of the chromatin remodeler RSC and insights into its nucleosome engagement. Elife 8, e54449 (2019). [PMID: 31886770]
  20. Wagner, F. R. et al. Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature https://doi.org/10.1038/s41586-020-2088-0 (2020).
  21. Ye, Y. et al. Structure of the RSC complex bound to the nucleosome. Science 366, 838–843 (2019). [PMID: 31672915]
  22. Han, Y., Reyes, A. A., Malik, S. & He, Y. Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature https://doi.org/10.1038/s41586-020-2087-1 (2020).
  23. He, S. et al. Structure of nucleosome-bound human BAF complex. Science 367, 875 (2020). [PMID: 32001526]
  24. Eastlund, A., Malik, S. S. & Fischer, C. J. Kinetic mechanism of DNA translocation by the RSC molecular motor. Arch. Biochem. Biophys. 532, 73–83 (2013). [PMID: 23399434]
  25. Malik, S. S., Rich, E., Viswanathan, R., Cairns, B. R. & Fischer, C. J. Allosteric interactions of DNA and nucleotides with S. cerevisiae RSC. Biochemistry 50, 7881–7890 (2011). [PMID: 21834590]
  26. Sirinakis, G. et al. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size. EMBO J. 30, 2364–2372 (2011). [PMID: 21552204]
  27. Li, M. et al. Mechanism of DNA translocation underlying chromatin remodelling by Snf2. Nature 567, 409–413 (2019). [PMID: 30867599]
  28. Xia, X., Liu, X., Li, T., Fang, X. & Chen, Z. Structure of chromatin remodeler Swi2/Snf2 in the resting state. Nat. Struct. Mol. Biol. 23, 722–729 (2016). [PMID: 27399259]
  29. Nakane, T., Kimanius, D., Lindahl, E., Scheres, S. H. & Brunger, A. T. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife 7, e36861 (2018). [PMID: 29856314]
  30. Armache, K.-J., Garlick, J. D., Canzio, D., Narlikar, G. J. & Kingston, R. E. Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution. Science 334, 977–982 (2011). [PMID: 22096199]
  31. Barbera, A. J. et al. The nucleosomal surface as a docking station for Kaposi’s sarcoma herpesvirus LANA. Science 311, 856 (2006). [PMID: 16469929]
  32. Kato, H. et al. A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 340, 1110–1113 (2013). [PMID: 23723239]
  33. Makde, R. D., England, J. R., Yennawar, H. P. & Tan, S. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467, 562–566 (2010). [PMID: 20739938]
  34. McGinty, R. K., Henrici, R. C. & Tan, S. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514, 591–596 (2014). [PMID: 25355358]
  35. Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288.e20 (2018). [PMID: 30343899]
  36. Dann, G. P. et al. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature 548, 607 (2017). [PMID: 28767641]
  37. Levendosky, R. F. & Bowman, G. D. Asymmetry between the two acidic patches dictates the direction of nucleosome sliding by the ISWI chromatin remodeler. Elife 8, e45472 (2019). [PMID: 31094676]
  38. Dao, H. T., Dul, B. E., Dann, G. P., Liszczak, G. P. & Muir, T. W. A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing. Nat. Chem. Biol. 16, 134–142 (2020). [PMID: 31819269]
  39. Valencia, A. M. et al. Recurrent SMARCB1 mutations reveal a nucleosome acidic patch interaction site that potentiates mSWI/SNF complex chromatin remodeling. Cell 179, 1342–1356.e23 (2019). [PMID: 31759698]
  40. Dyer, P. N. et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 375, 23–44 (2003). [DOI: 10.1016/S0076-6879(03)75002-2]
  41. Stark, H. In Methods in Enzymology Vol. 481 (Ed. Jensen, G. J.) 109–126 (Elsevier, 2010).
  42. Herzik, J. M. A., Wu, M. & Lander, G. C. Achieving better-than-3-Å resolution by single-particle cryo-EM at 200 keV. Nat. Methods 14, 1075–1078 (2017). [PMID: 28991891]
  43. Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009). [PMID: 19263523]
  44. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996). [PMID: 8742726]
  45. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). [PMID: 28250466]
  46. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). [PMID: 26278980]
  47. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018). [PMID: 30412051]
  48. Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019). [PMID: 31240256]
  49. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). [PMID: 28165473]
  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004). [PMID: 15572765]
  51. Cianfrocco, M. A., Lahiri, I., DiMaio, F. & Leschziner, A. E. cryoem-cloud-tools: a software platform to deploy and manage cryo-EM jobs in the cloud. J. Struct. Biol. 203, 230–235 (2018). [PMID: 29864529]
  52. Song, Y. et al. High-resolution comparative modeling with RosettaCM. Structure 21, 1735–1742 (2013). [PMID: 24035711]
  53. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010). [PMID: 20057044]
  54. Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017). [PMID: 28430426]
  55. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018). [PMID: 29872004]
  56. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019). [PMID: 31588918]

Grants

  1. R01 GM073791/NIGMS NIH HHS
  2. R01 GM092895/NIGMS NIH HHS
  3. T32 AR053461/NIAMS NIH HHS

MeSH Term

Amino Acid Sequence
Carrier Proteins
Cell Cycle Proteins
Chromatin
Chromatin Assembly and Disassembly
Chromosomal Proteins, Non-Histone
Cryoelectron Microscopy
DNA-Binding Proteins
Nuclear Proteins
Nucleosomes
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Transcription Factors

Chemicals

ARP7 protein, S cerevisiae
ARP9 protein, S cerevisiae
Carrier Proteins
Cell Cycle Proteins
Chromatin
Chromosomal Proteins, Non-Histone
DNA-Binding Proteins
Nuclear Proteins
Nucleosomes
RSC complex, S cerevisiae
Rtt102 protein, S cerevisiae
Saccharomyces cerevisiae Proteins
Transcription Factors
STH1 protein, S cerevisiae

Word Cloud

Created with Highcharts 10.0.0RSCSth1chromatininsightsassemblyregulationremodelingSWI/SNFremodelersproteinsubcomplexARPcomplexmodifypositionspacingnucleosomeshumanslinkedcancerprovidefamilyfocusedSaccharomycescerevisiaecomprisingATPaseessentialactin-relatedproteinsARPsArp7Arp9ARP-bindingRtt102Cryo-EMbiochemicalanalysesshowsbindinginduceshelicalconformationhelicase-SANT-associatedHSAdomainSurprisinglymodulerotated120°relativefullpivotpointpreviouslyidentifiedregulatoryhubsuggestinglargeconformationalchangespartalsoshowconservedinteractionnucleosomeacidicpatchenhancescancer-associatedmutationsdysregulateratherinactivateadvancemechanisticunderstandingdiseasestatesStructuralfunction

Similar Articles

Cited By