Evolutionary Genetics of .

Zachary J Oppler, Kayleigh R O'Keeffe, Karen D McCoy, Dustin Brisson
Author Information
  1. Zachary J Oppler: Department of Biology, University of Pennsylvania, 433 South University Ave, Philadelphia, PA 19104, USA.
  2. Kayleigh R O'Keeffe: Department of Biology, University of Pennsylvania, 433 South University Ave, Philadelphia, PA 19104, USA.
  3. Karen D McCoy: Centre for Research on the Ecology and Evolution of Diseases (CREES), MiVEGEC, University of Montpellier - CNRS - IRD, Montpellier, France.
  4. Dustin Brisson: Department of Biology, University of Pennsylvania, 433 South University Ave, Philadelphia, PA 19104, USA.

Abstract

The genus consists of evolutionarily and genetically diverse bacterial species that cause a variety of diseases in humans and domestic animals. These vector-borne spirochetes can be classified into two major evolutionary groups, the Lyme borreliosis clade and the relapsing fever clade, both of which have complex transmission cycles during which they interact with multiple host species and arthropod vectors. Molecular, ecological, and evolutionary studies have each provided significant contributions towards our understanding of the natural history, biology and evolutionary genetics of species; however, integration of these studies is required to identify the evolutionary causes and consequences of the genetic variation within and among species. For example, molecular and genetic studies have identified the adaptations that maximize fitness components throughout the lifecycle and enhance transmission efficacy but provide limited insights into the evolutionary pressures that have produced them. Ecological studies can identify interactions between species and the vertebrate hosts and arthropod vectors they encounter and the resulting impact on the geographic distribution and abundance of spirochetes but not the genetic or molecular basis underlying these interactions. In this review we discuss recent findings on the evolutionary genetics from both of the evolutionarily distinct clades of species. We focus on connecting molecular interactions to the ecological processes that have driven the evolution and diversification of species in order to understand the current distribution of genetic and molecular variation within and between species.

References

  1. Mol Phylogenet Evol. 2019 Feb;131:93-98 [PMID: 30423440]
  2. Evolution. 2010 Sep;64(9):2653-63 [PMID: 20394659]
  3. Infect Immun. 2014 Jan;82(1):380-92 [PMID: 24191298]
  4. Int J Med Microbiol. 2007 Apr;297(2):97-107 [PMID: 17267282]
  5. Environ Microbiol. 2011 Sep;13(9):2453-67 [PMID: 21651685]
  6. Eur J Clin Microbiol Infect Dis. 2003 Jun;22(6):364-7 [PMID: 12783276]
  7. Science. 2009 Dec 4;326(5958):1362-7 [PMID: 19965751]
  8. Am J Trop Med Hyg. 2009 Dec;81(6):1120-31 [PMID: 19996447]
  9. PLoS Negl Trop Dis. 2016 Mar 17;10(3):e0004539 [PMID: 26986203]
  10. BMC Genomics. 2016 Sep 15;17(1):734 [PMID: 27632983]
  11. FEMS Immunol Med Microbiol. 2012 Oct;66(1):1-19 [PMID: 22540535]
  12. PLoS Pathog. 2012;8(11):e1003007 [PMID: 23209403]
  13. Mol Microbiol. 2019 Apr;111(4):868-882 [PMID: 30666741]
  14. Parasit Vectors. 2020 Jan 14;13(1):29 [PMID: 31937369]
  15. Infect Immun. 1996 Jun;64(6):2234-9 [PMID: 8675332]
  16. Ticks Tick Borne Dis. 2018 Jul;9(5):1057-1063 [PMID: 29653905]
  17. Med Microbiol Immunol. 1993 Nov;182(5):255-70 [PMID: 8283961]
  18. Philos Trans R Soc Lond B Biol Sci. 2001 Jul 29;356(1411):983-9 [PMID: 11516376]
  19. BMC Genomics. 2018 Mar 27;19(1):218 [PMID: 29580205]
  20. Appl Environ Microbiol. 2017 Jan 17;83(3): [PMID: 27836839]
  21. Infect Immun. 2001 Jul;69(7):4303-12 [PMID: 11401967]
  22. Trends Microbiol. 2001 Jul;9(7):344-50 [PMID: 11435109]
  23. Cell. 2004 Nov 12;119(4):457-68 [PMID: 15537536]
  24. PLoS One. 2016 Feb 22;11(2):e0149345 [PMID: 26901761]
  25. Nat Commun. 2015 Jan 08;6:5975 [PMID: 25569306]
  26. Future Microbiol. 2013 Jan;8(1):41-56 [PMID: 23252492]
  27. Int J Syst Evol Microbiol. 2017 Apr;67(4):1081-1084 [PMID: 27930271]
  28. Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723): [PMID: 28483868]
  29. Infect Immun. 1998 Aug;66(8):3689-97 [PMID: 9673250]
  30. Appl Environ Microbiol. 2009 Aug;75(16):5410-6 [PMID: 19542332]
  31. Science. 2010 Oct 8;330(6001):243-6 [PMID: 20929776]
  32. Infect Immun. 1999 Jan;67(1):36-42 [PMID: 9864193]
  33. Front Cell Infect Microbiol. 2017 Jun 22;7:281 [PMID: 28690983]
  34. Appl Environ Microbiol. 2015 Nov;81(21):7350-9 [PMID: 26296723]
  35. Front Cell Infect Microbiol. 2019 Dec 19;9:431 [PMID: 31921706]
  36. J Infect Dis. 1997 Feb;175(2):400-5 [PMID: 9203661]
  37. Appl Environ Microbiol. 2013 Dec;79(23):7273-80 [PMID: 24038700]
  38. PLoS One. 2014 Apr 10;9(4):e94384 [PMID: 24721934]
  39. J Clin Microbiol. 1990 Dec;28(12):2693-9 [PMID: 2280000]
  40. Nat Ecol Evol. 2017 Oct;1(10):1569-1576 [PMID: 29185509]
  41. Biol Direct. 2012 Jun 25;7:18 [PMID: 22731697]
  42. Genetics. 2004 Oct;168(2):713-22 [PMID: 15514047]
  43. PLoS Genet. 2008 Sep 12;4(9):e1000185 [PMID: 18787695]
  44. J Bacteriol. 1993 Feb;175(4):926-32 [PMID: 7679385]
  45. Philos Trans R Soc Lond B Biol Sci. 2017 Jun 5;372(1722): [PMID: 28438910]
  46. Infect Immun. 2003 Apr;71(4):1689-705 [PMID: 12654782]
  47. Ticks Tick Borne Dis. 2020 Mar;11(2):101335 [PMID: 31836459]
  48. Am J Trop Med Hyg. 2006 Apr;74(4):615-22 [PMID: 16606995]
  49. Infect Genet Evol. 2013 Mar;14:147-55 [PMID: 23219915]
  50. J Infect Dis. 2002 Sep 15;186(6):782-91 [PMID: 12198612]
  51. Mol Ecol. 2016 Oct;25(19):4963-77 [PMID: 27588381]
  52. PLoS One. 2014 Dec 29;9(12):e115494 [PMID: 25545393]
  53. Proc Biol Sci. 2018 Oct 31;285(1890): [PMID: 30381382]
  54. J Clin Microbiol. 2000 Jun;38(6):2128-33 [PMID: 10834965]
  55. PLoS One. 2014 Jun 18;9(6):e99348 [PMID: 24940999]
  56. Infect Genet Evol. 2011 Oct;11(7):1545-63 [PMID: 21843658]
  57. Microbes Infect. 2006 Mar;8(3):645-52 [PMID: 16513394]
  58. Mol Microbiol. 1995 Oct;18(2):257-69 [PMID: 8709845]
  59. Ticks Tick Borne Dis. 2020 May;11(3):101359 [PMID: 32067949]
  60. Microbiol Spectr. 2014 Dec;2(6): [PMID: 26104445]
  61. Cornell Vet. 1992 Jul;82(3):253-74 [PMID: 1643876]
  62. Lancet Infect Dis. 2016 May;16(5):556-564 [PMID: 26856777]
  63. Infect Immun. 2004 Nov;72(11):6577-85 [PMID: 15501789]
  64. PLoS One. 2013 Nov 04;8(11):e78473 [PMID: 24223812]
  65. PLoS Pathog. 2009 Feb;5(2):e1000293 [PMID: 19214205]
  66. Trends Parasitol. 2016 Jan;32(1):30-42 [PMID: 26613664]
  67. PLoS One. 2013 Sep 17;8(9):e73066 [PMID: 24069170]
  68. Front Cell Infect Microbiol. 2013 Oct 04;3:57 [PMID: 24109592]
  69. PLoS Pathog. 2007 Mar;3(3):e33 [PMID: 17352535]
  70. Sci Rep. 2019 Apr 30;9(1):6711 [PMID: 31040326]
  71. Nat Rev Microbiol. 2006 Sep;4(9):660-9 [PMID: 16894341]
  72. Emerg Infect Dis. 2006 Apr;12(4):604-11 [PMID: 16704808]
  73. Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E781-E790 [PMID: 28096373]
  74. Front Cell Infect Microbiol. 2018 Apr 04;8:98 [PMID: 29670860]
  75. Infect Immun. 2008 Nov;76(11):5228-37 [PMID: 18779341]
  76. Annu Rev Genet. 2012;46:515-36 [PMID: 22974303]
  77. mBio. 2012 Dec 04;3(6):e00434-12 [PMID: 23221801]
  78. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):15013-8 [PMID: 19706476]
  79. Biochem J. 1988 Jan 15;249(2):593-602 [PMID: 2963625]
  80. PLoS One. 2008;3(12):e4002 [PMID: 19104655]
  81. Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18290-5 [PMID: 17101971]
  82. Antonie Van Leeuwenhoek. 2014 Jun;105(6):1049-72 [PMID: 24744012]
  83. Infect Immun. 1995 Jun;63(6):2206-12 [PMID: 7768600]
  84. Environ Microbiol. 2011 Jan;13(1):184-192 [PMID: 20722696]
  85. J Appl Microbiol. 2010 Apr;108(4):1115-22 [PMID: 19886891]
  86. Acarologia. 1975 Apr;16(4):621-35 [PMID: 1179956]
  87. Cold Spring Harb Perspect Med. 2013 Dec 01;3(12):a010041 [PMID: 24296346]
  88. J Infect Dis. 1998 Sep;178(3):722-32 [PMID: 9728541]
  89. Am J Trop Med Hyg. 2008 May;78(5):806-10 [PMID: 18458317]
  90. BMC Microbiol. 2012 Jul 30;12:157 [PMID: 22846633]
  91. Appl Environ Microbiol. 2015 Sep;81(18):6200-9 [PMID: 26150449]
  92. Front Ecol Evol. 2018 Feb;6: [PMID: 34395455]
  93. J Infect Dis. 2008 Nov 1;198(9):1358-64 [PMID: 18781866]
  94. J Biol Chem. 2012 May 11;287(20):16860-8 [PMID: 22433849]
  95. Lancet. 2012 Feb 4;379(9814):461-73 [PMID: 21903253]
  96. Genetics. 2011 Nov;189(3):951-66 [PMID: 21890743]
  97. J Med Entomol. 1989 Jul;26(4):279-83 [PMID: 2769706]
  98. PLoS Pathog. 2013;9(11):e1003766 [PMID: 24244173]
  99. Int J Parasitol. 2008 Mar;38(3-4):371-80 [PMID: 17936286]
  100. Int J Syst Evol Microbiol. 2017 Jun;67(6):2058-2067 [PMID: 28141502]
  101. Ticks Tick Borne Dis. 2012 Apr;3(2):75-7 [PMID: 22445928]
  102. Ticks Tick Borne Dis. 2015 Apr;6(3):344-51 [PMID: 25766392]
  103. Parasit Vectors. 2016 May 27;9(1):309 [PMID: 27234215]
  104. Mol Ecol. 2020 Feb;29(3):485-501 [PMID: 31846173]
  105. Infect Immun. 2004 Sep;72(9):5419-32 [PMID: 15322040]
  106. PLoS One. 2017 Jan 17;12(1):e0167810 [PMID: 28095423]
  107. PLoS One. 2016 Feb 26;11(2):e0149889 [PMID: 26918760]
  108. Front Cell Infect Microbiol. 2020 Jan 30;10:1 [PMID: 32083019]
  109. Ecol Lett. 2013 Apr;16(4):556-67 [PMID: 23347009]
  110. Science. 2012 Mar 16;335(6074):1376-80 [PMID: 22383809]
  111. Parasit Vectors. 2018 Aug 6;11(1):454 [PMID: 30081938]
  112. PLoS One. 2014 Jun 30;9(6):e101009 [PMID: 24979342]
  113. PLoS Pathog. 2019 May 14;15(5):e1007644 [PMID: 31086414]
  114. Parasite. 2009 Sep;16(3):191-202 [PMID: 19839264]
  115. Trends Genet. 2015 Apr;31(4):201-7 [PMID: 25765920]
  116. Ecol Evol. 2019 Jun 13;9(13):7768-7779 [PMID: 31346439]
  117. J Clin Microbiol. 1995 Apr;33(4):958-61 [PMID: 7790468]
  118. J Immunol. 2001 Jun 15;166(12):7398-403 [PMID: 11390491]
  119. Infection. 1992 Nov-Dec;20(6):342-9 [PMID: 1293055]
  120. BMC Genomics. 2017 Jan 5;18(1):28 [PMID: 28056764]
  121. Microbiology (Reading). 2004 Jun;150(Pt 6):1741-1755 [PMID: 15184561]
  122. Science. 1982 Jun 18;216(4552):1317-9 [PMID: 7043737]
  123. Ticks Tick Borne Dis. 2013 Feb;4(1-2):46-51 [PMID: 23238242]
  124. Front Biosci (Landmark Ed). 2009 Jan 01;14(8):3051-63 [PMID: 19273256]
  125. Microbiol Rev. 1986 Dec;50(4):381-400 [PMID: 3540570]
  126. Front Microbiol. 2019 Jan 23;10:22 [PMID: 30728812]
  127. Ecol Evol. 2018 Feb 14;8(5):2901-2910 [PMID: 29531704]
  128. Evolution. 2015 Jul;69(7):1678-89 [PMID: 26149959]
  129. Mol Microbiol. 2007 Sep;65(6):1547-58 [PMID: 17714442]
  130. ISME J. 2018 Nov;12(11):2596-2607 [PMID: 29946195]
  131. PLoS Pathog. 2016 Jul 14;12(7):e1005759 [PMID: 27414806]
  132. Am J Pathol. 1991 Aug;139(2):263-73 [PMID: 1867318]
  133. Microbes Infect. 2006 Sep;8(11):2605-11 [PMID: 16962358]

Grants

  1. R01 AI142572/NIAID NIH HHS
  2. R21 AI137433/NIAID NIH HHS

MeSH Term

Animals
Borrelia
Evolution, Molecular
Genetic Fitness
Genetic Variation
Host-Pathogen Interactions
Humans
Lyme Disease

Word Cloud

Created with Highcharts 10.0.0speciesevolutionarystudiesgeneticmolecularinteractionsevolutionarilyspirochetescancladetransmissionarthropodvectorsecologicalgeneticsidentifyvariationwithindistributiongenusconsistsgeneticallydiversebacterialcausevarietydiseaseshumansdomesticanimalsvector-borneclassifiedtwomajorgroupsLymeborreliosisrelapsingfevercomplexcyclesinteractmultiplehostMolecularprovidedsignificantcontributionstowardsunderstandingnaturalhistorybiologyhoweverintegrationrequiredcausesconsequencesamongexampleidentifiedadaptationsmaximizefitnesscomponentsthroughoutlifecycleenhanceefficacyprovidelimitedinsightspressuresproducedEcologicalvertebratehostsencounterresultingimpactgeographicabundancebasisunderlyingreviewdiscussrecentfindingsdistinctcladesfocusconnectingprocessesdrivenevolutiondiversificationorderunderstandcurrentEvolutionaryGenetics

Similar Articles

Cited By