α-MSH-PE38KDEL Kills Melanoma Cells via Modulating Erk1/2/MITF/TYR Signaling in an MC1R-Dependent Manner.

Xilin Liu, Hong Li, Xianling Cong, Da Huo, Lele Cong, Guangzhi Wu
Author Information
  1. Xilin Liu: Department of Hand Surgery, China Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, People's Republic of China. ORCID
  2. Hong Li: Emergency Medical Department, China Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, People's Republic of China.
  3. Xianling Cong: Tissue Bank, China Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, People's Republic of China. ORCID
  4. Da Huo: Department of Hand Surgery, China Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, People's Republic of China.
  5. Lele Cong: Department of Dermatology, China Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, People's Republic of China.
  6. Guangzhi Wu: Department of Hand Surgery, China Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, People's Republic of China.

Abstract

BACKGROUND/OBJECTIVE: The immunotoxin α-MSH-PE38KDEL consisting of α-MSH and PE38KDEL showed high cytotoxicity on MSH receptor-positive melanoma cells, suggesting that α-MSH-PE38KDEL might be a potent drug for the treatment of melanoma. Herein, we explored whether the Erk1/2/MITF/TYR signaling, a verified target of α-MSH/MC1R, was involved in α-MSH-PE38KDEL-mediated cytotoxicity.
METHODS: Human melanoma cell line A375, mouse melanoma cell line B16-F10, human breast cancer cell line MDA-MB-231 and human primary epidermal melanocytes (HEMa) with different expression levels of MC1R were used in this study. Cell apoptosis and viability were determined by using flow cytometry and MTT assays. Protein expressions were tested by Western blotting.
RESULTS: The expression levels of MC1R in A375 and B16-F10 cells were significantly higher than that of MDA-MB-231 and HEMa. α-MSH-PE38KDEL treatment induced a significant inhibition in cell viability in A375 and B16-F10 cells, while showed no obvious influence in the viability of MDA-MB-231 and HEMa cells. However, knockdown of MC1R abolished α-MSH-PE38KDEL role in promoting cell apoptosis in A375 and B16-F10 cells, and upregulation of MC1R endowed α-MSH-PE38KDEL function to promote cell apoptosis in MDA-MB-231 and HEMa cells. Additionally, α-MSH-PE38KDEL treatment increased the phosphorylation levels of Erk1/2 and MITF (S73), and decreased MITF and TYR expressions in an MC1R-dependent manner. All of the treatments, including inhibition of Erk1/2 with PD98059, MC1R downregulation and MITF overexpression weakened the anti-tumor role of α-MSH-PE38KDEL in melanoma.
CONCLUSION: Collectively, this study indicates that α-MSH-PE38KDEL promotes melanoma cell apoptosis via modulating Erk1/2/MITF/TYR signaling in an MC1R-dependent manner.

Keywords

References

  1. Exp Cell Res. 1995 Apr;217(2):453-9 [PMID: 7698246]
  2. J Biol Chem. 2007 Feb 2;282(5):2862-70 [PMID: 17127674]
  3. Pigment Cell Res. 1997 Aug;10(4):218-28 [PMID: 9263329]
  4. Nature. 2014 Nov 20;515(7527):S109 [PMID: 25407704]
  5. Mol Cancer. 2014 Sep 01;13:204 [PMID: 25178635]
  6. J Mol Med (Berl). 2010 Dec;88(12):1195-201 [PMID: 20617297]
  7. Front Microbiol. 2015 Sep 15;6:963 [PMID: 26441897]
  8. Mol Cell. 2013 Aug 22;51(4):409-22 [PMID: 23973372]
  9. Neoplasma. 2014;61(4):392-400 [PMID: 25027740]
  10. FEBS J. 2011 Dec;278(23):4683-700 [PMID: 21585657]
  11. Int J Mol Sci. 2015 Aug 07;16(8):18384-95 [PMID: 26262610]
  12. Annu Rev Genet. 2004;38:365-411 [PMID: 15568981]
  13. Clin Lab Med. 2017 Sep;37(3):449-471 [PMID: 28802495]
  14. Nature. 2006 Nov 30;444(7119):638-42 [PMID: 17136094]
  15. Toxins (Basel). 2016 Sep 22;8(10): [PMID: 27669301]
  16. Chin Clin Oncol. 2016 Aug;5(4):57 [PMID: 27164849]
  17. Int J Cancer. 2008 Jun 15;122(12):2753-60 [PMID: 18366057]
  18. PLoS One. 2015 Mar 23;10(3):e0122040 [PMID: 25798605]
  19. Eur J Dermatol. 2016 Aug 1;26(4):335-9 [PMID: 27436815]
  20. FEBS Lett. 2009 Oct 6;583(19):3269-74 [PMID: 19755124]
  21. Pigment Cell Res. 2000 Apr;13(2):60-9 [PMID: 10841026]
  22. Cancer Cell. 2004 Dec;6(6):565-76 [PMID: 15607961]
  23. Mol Endocrinol. 2011 Jan;25(1):138-56 [PMID: 21084381]
  24. Oncogene. 2002 Nov 14;21(52):8037-46 [PMID: 12439754]
  25. J Invest Dermatol. 2009 Feb;129(2):422-31 [PMID: 18971960]
  26. Med Sci (Paris). 2006 Jan;22(1):10-3 [PMID: 16386209]
  27. N Engl J Med. 2006 Jul 6;355(1):51-65 [PMID: 16822996]
  28. Exp Ther Med. 2020 Mar;19(3):1878-1886 [PMID: 32104244]
  29. J Mol Biol. 2001 Dec 7;314(4):823-37 [PMID: 11734000]
  30. Mol Cancer. 2014 Mar 13;13:57 [PMID: 24625085]
  31. Mol Cancer. 2010 Aug 11;9:214 [PMID: 20701798]
  32. Int J Med Microbiol. 2009 Mar;299(3):161-76 [PMID: 18948059]
  33. MMWR Morb Mortal Wkly Rep. 2015 Jun 5;64(21):591-6 [PMID: 26042651]
  34. J Cell Sci. 1999 Feb;112 ( Pt 4):467-75 [PMID: 9914159]
  35. Cell. 2002 Jun 14;109(6):707-18 [PMID: 12086670]
  36. J Nucl Med. 2002 Dec;43(12):1699-706 [PMID: 12468522]
  37. Biosci Biotechnol Biochem. 2010;74(3):579-82 [PMID: 20208349]
  38. J Biol Chem. 1993 Oct 15;268(29):21791-9 [PMID: 8408034]