Glucuronoxylomannan in the Cryptococcus species capsule as a target for Chimeric Antigen Receptor T-cell therapy.

Thiago Aparecido da Silva, Paul J Hauser, Irfan Bandey, Tamara Laskowski, Qi Wang, Amer M Najjar, Pappanaicken R Kumaresan
Author Information
  1. Thiago Aparecido da Silva: Deparment of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
  2. Paul J Hauser: Deparment of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  3. Irfan Bandey: Deparment of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  4. Tamara Laskowski: Deparment of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  5. Qi Wang: Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  6. Amer M Najjar: Deparment of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  7. Pappanaicken R Kumaresan: Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Electronic address: PKumaresan@mdanderson.org.

Abstract

BACKGROUND AIMS: The genus Cryptococcus comprises two major fungal species that cause clinical infections in humans: Cryptococcus gattii and Cryptococcus neoformans. To establish invasive human disease, inhaled cryptococci must penetrate the lung tissue and reproduce. Each year, about 1 million cases of Cryptococcus infection are reported worldwide, and the infection's mortality rate ranges from 20% to 70%. Many HIV/AIDS patients are affected by Cryptococcus infections, with 220,000 cases of cryptococcal meningitis reported worldwide in this population every year (C. neoformans infection statistics, via the Centers for Disease Control and Prevention, https://www.cdc.gov/fungal/diseases/cryptococcosis-neoformans/statistics.html). To escape from host immune cell attack, Cryptococcus covers itself in a sugar-based capsule composed primarily of glucuronoxylomannan (GXM). To evade phagocytosis, yeast cells increase to a >45-µm perimeter and become titan, or giant, cells. Cryptococci virulence is directly proportional to the percentage of titan/giant cells present during Cryptococcus infection. To combat cryptococcosis, the authors propose the redirection of CD8 T cells to target the GXM in the capsule via expression of a GXM-specific chimeric antigen receptor (GXMR-CAR).
RESULTS: GXMR-CAR has an anti-GXM single-chain variable fragment followed by an IgG4 stalk in the extracellular domain, a CD28 transmembrane domain and CD28 and CD3-ς signaling domains. After lentiviral transduction of human T cells with the GXMR-CAR construct, flow cytometry demonstrated that 82.4% of the cells expressed GXMR-CAR on their surface. To determine whether the GXMR-CAR T cells exhibited GXM-specific recognition, these cells were incubated with GXM for 24 h and examined with the use of brightfield microscopy. Large clusters of proliferating GXMR-CAR T cells were observed in GXM-treated cells, whereas no clusters were observed in control cells. Moreover, the interaction of GXM with GXMR-CAR T cells was detected via flow cytometry by using a GXM-specific antibody, and the recognition of GXM by GXMR-CAR T cells triggered the secretion of granzyme and interferon gamma (IFN-γ). The ability of GXMR-CAR T cells to bind to the yeast form of C. neoformans was detected by fluorescent microscopy, but no binding was detected in mock-transduced control T cells (NoDNA T cells). Moreover, lung tissue sections were stained with Gomori Methenamine Silver and evaluated by NanoZoomer (Hamamatsu), revealing a significantly lower number of titan cells, with perimeters ranging from 50 to 130 µm and giant cells >130 µm in the CAR T-cell treated group when compared with other groups. Therefore, the authors validated the study's hypothesis by the redirection of GXMR-CAR T cells to target GXM, which induces the secretion of cytotoxic granules and IFN-γ that will aid in the control of cryptococcosis CONCLUSIONS: Thus, these findings reveal that GXMR-CAR T cells can target C. neoformans. Future studies will be focused on determining the therapeutic efficacy of GXMR-CAR T cells in an animal model of cryptococcosis.

Keywords

References

  1. Cancer Res. 2006 Nov 15;66(22):10995-1004 [PMID: 17108138]
  2. N Engl J Med. 2011 Aug 25;365(8):725-33 [PMID: 21830940]
  3. Blood. 2011 Nov 3;118(18):4817-28 [PMID: 21849486]
  4. Antimicrob Agents Chemother. 1998 Jun;42(6):1437-46 [PMID: 9624491]
  5. Infect Immun. 1994 May;62(5):1507-12 [PMID: 8168912]
  6. Blood Rev. 2016 May;30(3):157-67 [PMID: 26574053]
  7. J Immunol. 2013 Jul 1;191(1):238-48 [PMID: 23733871]
  8. Blood. 2012 Mar 22;119(12):2709-20 [PMID: 22160384]
  9. Infect Immun. 1994 Jan;62(1):194-202 [PMID: 8262627]
  10. Clin Microbiol Infect. 2012 Feb;18(2):126-33 [PMID: 22264261]
  11. Adv Appl Microbiol. 2009;67:131-90 [PMID: 19245939]
  12. PLoS Pathog. 2010 Jun 17;6(6):e1000945 [PMID: 20585557]
  13. Exp Ther Med. 2017 Dec;14(6):5243-5250 [PMID: 29285049]
  14. mBio. 2017 Nov 28;8(6): [PMID: 29184017]
  15. Antimicrob Agents Chemother. 2013 Nov;57(11):5478-85 [PMID: 23979758]
  16. Glycobiology. 1997 Sep;7(6):725-30 [PMID: 9376674]
  17. Annu Rev Pathol. 2014;9:219-38 [PMID: 24050625]
  18. N Engl J Med. 2014 Oct 16;371(16):1507-17 [PMID: 25317870]
  19. Lancet. 2015 Feb 7;385(9967):517-528 [PMID: 25319501]
  20. Immunol Rev. 2014 Jan;257(1):107-26 [PMID: 24329793]
  21. Semin Immunol. 2013 Apr;25(2):146-51 [PMID: 23757291]
  22. Clin Chest Med. 2017 Sep;38(3):451-464 [PMID: 28797488]
  23. Mol Ther. 2020 Jul 8;28(7):1561-1562 [PMID: 32562615]
  24. Nat Biotechnol. 2002 Jan;20(1):70-5 [PMID: 11753365]
  25. PLoS Pathog. 2019 Jul 29;15(7):e1007945 [PMID: 31356623]
  26. Mem Inst Oswaldo Cruz. 2018;113(7):e170554 [PMID: 29641639]
  27. Am J Respir Cell Mol Biol. 1997 Dec;17(6):733-9 [PMID: 9409560]
  28. Curr Opin Immunol. 2012 Aug;24(4):449-58 [PMID: 22613091]
  29. Infect Immun. 2014 Sep;82(9):3880-90 [PMID: 24980974]
  30. Med Mycol. 2012 Feb;50(2):113-29 [PMID: 21939343]
  31. Nat Commun. 2017 Dec 6;8(1):1968 [PMID: 29213074]
  32. PLoS Pathog. 2018 May 18;14(5):e1006982 [PMID: 29775480]
  33. Annu Rev Immunol. 2012;30:115-48 [PMID: 22224780]
  34. Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1506-11 [PMID: 19141631]
  35. Nat Rev Drug Discov. 2017 Sep;16(9):603-616 [PMID: 28496146]
  36. Adv Appl Microbiol. 2009;68:133-216 [PMID: 19426855]
  37. Infect Immun. 1999 Feb;67(2):936-41 [PMID: 9916111]
  38. J Fungi (Basel). 2017 Aug 28;3(3): [PMID: 29371564]
  39. Infect Immun. 2005 Mar;73(3):1788-96 [PMID: 15731080]
  40. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12980-5 [PMID: 19651610]
  41. J Immunother Cancer. 2018 Dec 4;6(1):137 [PMID: 30514386]
  42. Infect Immun. 2014 Mar;82(3):937-48 [PMID: 24324191]
  43. Lancet Infect Dis. 2017 Aug;17(8):873-881 [PMID: 28483415]
  44. Innate Immun. 2020 Feb;26(2):117-129 [PMID: 31446837]
  45. Antimicrob Agents Chemother. 2018 May 25;62(6): [PMID: 29632013]
  46. Blood. 2003 Feb 15;101(4):1637-44 [PMID: 12393484]
  47. Cancer Discov. 2013 Apr;3(4):388-98 [PMID: 23550147]
  48. Antimicrob Agents Chemother. 2005 Mar;49(3):952-8 [PMID: 15728888]
  49. J Biomed Biotechnol. 2010;2010:249482 [PMID: 20617144]
  50. Infect Immun. 2006 Aug;74(8):4538-48 [PMID: 16861640]
  51. Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10660-5 [PMID: 25002471]
  52. Infect Immun. 2007 Jun;75(6):2729-39 [PMID: 17371865]
  53. Nat Commun. 2018 Feb 21;9(1):751 [PMID: 29467448]
  54. Front Immunol. 2018 Jan 08;8:1939 [PMID: 29358941]
  55. Clin Infect Dis. 1994 May;18(5):789-92 [PMID: 8075272]

Grants

  1. R21 AI127381/NIAID NIH HHS
  2. R33 AI127381/NIAID NIH HHS

MeSH Term

Animals
CD8-Positive T-Lymphocytes
Cell- and Tissue-Based Therapy
Cryptococcus neoformans
Humans
Polysaccharides
Receptors, Chimeric Antigen

Chemicals

Polysaccharides
Receptors, Chimeric Antigen
glucuronoxylomannan

Word Cloud

Created with Highcharts 10.0.0cellsTGXMR-CARCryptococcusGXMneoformanstargetinfectionCviacapsulecryptococcosisGXM-specificcontroldetectedtherapyfungalspeciesinfectionshumanlungtissueyearcasesreportedworldwidecellyeasttitangiantauthorsredirectiondomainCD28flowcytometryrecognitionmicroscopyclustersobservedMoreoversecretionIFN-γµmT-cellwillGlucuronoxylomannanBACKGROUNDAIMS:genuscomprisestwomajorcauseclinicalhumans:gattiiestablishinvasivediseaseinhaledcryptococcimustpenetratereproduce1millioninfection'smortalityrateranges20%70%ManyHIV/AIDSpatientsaffected220000cryptococcalmeningitispopulationeverystatisticsCentersDiseaseControlPreventionhttps://wwwcdcgov/fungal/diseases/cryptococcosis-neoformans/statisticshtmlescapehostimmuneattackcoverssugar-basedcomposedprimarilyglucuronoxylomannanevadephagocytosisincrease>45-µmperimeterbecomeCryptococcivirulencedirectlyproportionalpercentagetitan/giantpresentcombatproposeCD8expressionchimericantigenreceptorRESULTS:anti-GXMsingle-chainvariablefragmentfollowedIgG4stalkextracellulartransmembraneCD3-ςsignalingdomainslentiviraltransductionconstructdemonstrated824%expressedsurfacedeterminewhetherexhibitedincubated24hexaminedusebrightfieldLargeproliferatingGXM-treatedwhereasinteractionusingantibodytriggeredgranzymeinterferongammaabilitybindformfluorescentbindingmock-transducedNoDNAsectionsstainedGomoriMethenamineSilverevaluatedNanoZoomerHamamatsurevealingsignificantlylowernumberperimetersranging50130>130CARtreatedgroupcomparedgroupsThereforevalidatedstudy'shypothesisinducescytotoxicgranulesaidCONCLUSIONS:ThusfindingsrevealcanFuturestudiesfocuseddeterminingtherapeuticefficacyanimalmodelChimericAntigenReceptorCryptoocccusimmunotherapy

Similar Articles

Cited By