The Partner Switching System of the SigF Sigma Factor in and Induction of the SigF Regulon Under Respiration-Inhibitory Conditions.
Yuna Oh, Su-Yeon Song, Hye-Jun Kim, Gil Han, Jihwan Hwang, Ho-Young Kang, Jeong-Il Oh
Author Information
Yuna Oh: Department of Integrated Biological Science, Pusan National University, Busan, South Korea.
Su-Yeon Song: Department of Integrated Biological Science, Pusan National University, Busan, South Korea.
Hye-Jun Kim: Department of Integrated Biological Science, Pusan National University, Busan, South Korea.
Gil Han: Department of Integrated Biological Science, Pusan National University, Busan, South Korea.
Jihwan Hwang: Department of Integrated Biological Science, Pusan National University, Busan, South Korea.
Ho-Young Kang: Department of Integrated Biological Science, Pusan National University, Busan, South Korea.
Jeong-Il Oh: Department of Integrated Biological Science, Pusan National University, Busan, South Korea.
中文译文
English
The partner switching system (PSS) of the SigF regulatory pathway in has been previously demonstrated to include the anti-sigma factor RsbW (MSMEG_1803) and two anti-sigma factor antagonists RsfA and RsfB. In this study, we further characterized two additional RsbW homologs and revealed the distinct roles of three RsbW homologs [RsbW1 (MSMEG_1803), RsbW2 (MSMEG_6129), and RsbW3 (MSMEG_1787)] in the SigF PSS. RsbW1 and RsbW2 serve as the anti-sigma factor of SigF and the protein kinase phosphorylating RsfB, respectively, while RsbW3 functions as an anti-SigF antagonist through its protein interaction with RsbW1. Using relevant mutant strains, RsfB was demonstrated to be the major anti-SigF antagonist in . The phosphorylation state of Ser-63 was shown to determine the functionality of RsfB as an anti-SigF antagonist. RsbW2 was demonstrated to be the only protein kinase that phosphorylates RsfB in . Phosphorylation of Ser-63 inactivates RsfB to render it unable to interact with RsbW1. Our comparative RNA sequencing analysis of the wild-type strain of and its isogenic Δ mutant strain lacking the cytochrome oxidase of the respiratory electron transport chain revealed that expression of the SigF regulon is strongly induced under respiration-inhibitory conditions in an RsfB-dependent way.
Microbiology (Reading). 2011 Jan;157(Pt 1):3-12
[PMID: 21051490 ]
Environ Microbiol Rep. 2018 Apr;10(2):127-139
[PMID: 29393573 ]
Genes Dev. 1994 Nov 1;8(21):2653-63
[PMID: 7958923 ]
Tuberculosis (Edinb). 2005 Sep-Nov;85(5-6):347-55
[PMID: 16263329 ]
Biochemistry. 1999 Mar 2;38(9):2688-96
[PMID: 10052939 ]
J Bacteriol. 2018 Jun 25;200(14):
[PMID: 29712875 ]
Methods Enzymol. 1991;194:1-863
[PMID: 2005781 ]
Antimicrob Agents Chemother. 1999 Feb;43(2):218-25
[PMID: 9925509 ]
Curr Opin Biotechnol. 2005 Apr;16(2):218-24
[PMID: 15831390 ]
Cell. 2002 Mar 22;108(6):795-807
[PMID: 11955433 ]
Adv Microb Physiol. 2001;44:35-91
[PMID: 11407115 ]
Mol Microbiol. 2002 Feb;43(3):717-31
[PMID: 11929527 ]
Tuber Lung Dis. 1997;78(1):3-12
[PMID: 9666957 ]
FEBS J. 2008 Dec;275(24):6295-308
[PMID: 19016841 ]
J Bacteriol. 2010 May;192(10):2491-502
[PMID: 20233930 ]
Microbiology (Reading). 2008 Sep;154(Pt 9):2786-2795
[PMID: 18757812 ]
J Bacteriol. 2008 Dec;190(23):7859-63
[PMID: 18805974 ]
Curr Microbiol. 2008 Jun;56(6):574-80
[PMID: 18324436 ]
FEMS Microbiol Rev. 2006 Nov;30(6):926-41
[PMID: 17064287 ]
Trends Microbiol. 2005 Nov;13(11):505-9
[PMID: 16140533 ]
Curr Opin Struct Biol. 2007 Dec;17(6):755-60
[PMID: 17920859 ]
J Bacteriol. 1996 Sep;178(18):5456-63
[PMID: 8808936 ]
J Bacteriol. 2012 Apr;194(8):2001-9
[PMID: 22307756 ]
mBio. 2011 Jun 14;2(3):e00100-11
[PMID: 21673191 ]
Infect Immun. 2000 Oct;68(10):5575-80
[PMID: 10992456 ]
J Bacteriol. 2004 Feb;186(4):895-902
[PMID: 14761983 ]
Annu Rev Microbiol. 2007;61:215-36
[PMID: 18035607 ]
Mol Microbiol. 2002 Sep;45(6):1527-40
[PMID: 12354223 ]
Microbiologyopen. 2015 Dec;4(6):896-916
[PMID: 26434659 ]
Tuberculosis (Edinb). 2019 Sep;118:101855
[PMID: 31430695 ]
Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2330-4
[PMID: 8460143 ]
Biochim Biophys Acta. 2009 Mar;1794(3):541-53
[PMID: 19130906 ]
Bioinformatics. 2010 Jan 1;26(1):139-40
[PMID: 19910308 ]
Mol Microbiol. 2018 Jun;108(6):661-682
[PMID: 29569300 ]
Nature. 1998 Jun 11;393(6685):537-44
[PMID: 9634230 ]
J Bacteriol. 2010 Oct;192(19):4868-75
[PMID: 20675480 ]
J Bacteriol. 1998 Nov;180(21):5612-8
[PMID: 9791109 ]
J Bacteriol. 1995 May;177(10):2912-3
[PMID: 7751305 ]
J Bacteriol. 1994 Apr;176(7):1813-20
[PMID: 8144446 ]
Anal Biochem. 2008 May 1;376(1):73-82
[PMID: 18328252 ]
J Mol Biol. 2004 Jul 23;340(5):941-56
[PMID: 15236958 ]
Biomolecules. 2015 Jun 26;5(3):1245-65
[PMID: 26131973 ]
Mol Microbiol. 2003 Sep;49(6):1657-69
[PMID: 12950928 ]
Virulence. 2013 Jan 1;4(1):3-66
[PMID: 23076359 ]
Microbiology (Reading). 2006 Jun;152(Pt 6):1591-1600
[PMID: 16735723 ]
J Bacteriol. 2007 Jun;189(11):4234-42
[PMID: 17384187 ]
Mol Microbiol. 2014 Jan;91(1):121-34
[PMID: 24176019 ]
Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2790-4
[PMID: 8610119 ]
Biochem Biophys Res Commun. 2008 Oct 24;375(3):465-70
[PMID: 18722345 ]
Mol Microbiol. 1990 Nov;4(11):1911-9
[PMID: 2082148 ]
Microbiol Spectr. 2014 Feb;2(1):MGM2-0007-2013
[PMID: 26082107 ]
FEBS J. 2010 Feb;277(3):605-26
[PMID: 19951358 ]
Front Microbiol. 2019 Mar 26;10:591
[PMID: 30984135 ]
J Bacteriol. 2019 Mar 13;201(7):
[PMID: 30642988 ]
Mol Microbiol. 2000 Jan;35(1):180-8
[PMID: 10632888 ]
Genes Dev. 1996 Sep 15;10(18):2265-75
[PMID: 8824586 ]
Gene. 2000 Aug 8;253(2):281-91
[PMID: 10940566 ]
Infect Immun. 2004 Mar;72(3):1733-45
[PMID: 14977982 ]
J Bacteriol. 2004 Dec;186(24):8490-8
[PMID: 15576799 ]
J Biol Chem. 2009 Oct 23;284(43):29828-35
[PMID: 19700407 ]
Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11554-9
[PMID: 10500215 ]