Multigenerational experimental simulation of climate change on an economically important insect pest.

David Schneider, Alejandra G Ramos, Alex Córdoba-Aguilar
Author Information
  1. David Schneider: Departamento de Ecología Evolutiva Instituto de Ecología Universidad Nacional Autónoma de México México Mexico. ORCID
  2. Alejandra G Ramos: Facultad de Ciencias Universidad Autónoma de Baja California Ensenada Mexico.
  3. Alex Córdoba-Aguilar: Departamento de Ecología Evolutiva Instituto de Ecología Universidad Nacional Autónoma de México México Mexico. ORCID

Abstract

Long-term multigenerational experimental simulations of climate change on insect pests of economically and socially important crops are crucial to anticipate challenges for feeding humanity in the not-so-far future. Mexican bean weevil , is a worldwide pest that attacks the common bean seeds, in crops and storage. We designed a long term (i.e., over 10 generations), experimental simulation of climate change by increasing temperature and CO air concentration in controlled conditions according to model predictions for 2100. Higher temperature and CO concentrations favored pest's egg-to-adult development survival, even at high female fecundity. It also induced a reduction of fat storage and increase of protein content but did not alter body size. After 10 generations of simulation, genetic adaptation was detected for total lipid content only, however, other traits showed signs of such process. Future experimental designs and methods similar to ours, are key for studying long-term effects of climate change through multigenerational experimental designs.

Keywords

Associated Data

Dryad | 10.5061/dryad.h44j0zph5

References

  1. J Insect Physiol. 2012 May;58(5):634-47 [PMID: 22310012]
  2. Glob Chang Biol. 2013 Jun;19(6):1884-96 [PMID: 23505245]
  3. Evol Appl. 2015 Dec 18;9(9):1082-1095 [PMID: 27695517]
  4. J Evol Biol. 2014 May;27(5):920-8 [PMID: 24735410]
  5. Evolution. 1979 Jun;33(2):579-584 [PMID: 28563951]
  6. Oecologia. 1978 Jan;35(3):307-318 [PMID: 28310276]
  7. Integr Comp Biol. 2013 Oct;53(4):557-70 [PMID: 23784699]
  8. Glob Chang Biol. 2018 Jan;24(1):13-34 [PMID: 29024256]
  9. Biol Rev Camb Philos Soc. 2020 Jun;95(3):802-821 [PMID: 32035015]
  10. Evolution. 1998 Aug;52(4):1241-1244 [PMID: 28565204]
  11. Genetics. 1986 Aug;113(4):1077-91 [PMID: 3744027]
  12. Front Plant Sci. 2019 Jun 04;10:739 [PMID: 31214237]
  13. PLoS One. 2013 Apr 25;8(4):e62528 [PMID: 23638105]
  14. New Phytol. 2005 Jul;167(1):207-18 [PMID: 15948843]
  15. J Vector Ecol. 2016 Jun;41(1):1-10 [PMID: 27232118]
  16. PLoS One. 2016 Apr 04;11(4):e0151959 [PMID: 27043311]
  17. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  18. Cell Stress Chaperones. 2005 Winter;10(4):312-28 [PMID: 16333985]
  19. PLoS One. 2018 Jun 12;13(6):e0198869 [PMID: 29894503]
  20. Glob Chang Biol. 2013 May;19(5):1407-16 [PMID: 23504696]
  21. J Vector Ecol. 2017 Jun;42(1):44-50 [PMID: 28504452]
  22. Glob Chang Biol. 2019 Jan;25(1):1-11 [PMID: 30422366]
  23. BMC Genet. 2004 Aug 27;5:25 [PMID: 15333142]
  24. Ecol Evol. 2020 Oct 27;10(23):12893-12909 [PMID: 33304502]
  25. Mem Inst Oswaldo Cruz. 2013;108 Suppl 1:34-47 [PMID: 24473801]
  26. Integr Comp Biol. 2004 Dec;44(6):498-509 [PMID: 21676736]
  27. PeerJ. 2013 Feb 12;1:e11 [PMID: 23638345]
  28. PLoS Comput Biol. 2009 Jun;5(6):e1000421 [PMID: 19557160]
  29. J Am Mosq Control Assoc. 1985 Sep;1(3):302-4 [PMID: 2906672]
  30. Science. 1981 Aug 28;213(4511):957-66 [PMID: 17789014]
  31. Glob Chang Biol. 2017 Jan;23(1):307-317 [PMID: 27469983]
  32. Philos Trans R Soc Lond B Biol Sci. 2017 Jan 19;372(1712): [PMID: 27920390]
  33. Philos Trans R Soc Lond B Biol Sci. 2018 Oct 5;373(1757): [PMID: 30150219]
  34. Front Physiol. 2019 Jan 14;9:1909 [PMID: 30692933]
  35. Heredity (Edinb). 2015 May;114(5):431-40 [PMID: 25269380]
  36. J Exp Biol. 2006 May;209(Pt 10):1837-47 [PMID: 16651550]
  37. Horm Behav. 2012 Aug;62(3):324-30 [PMID: 22381405]
  38. Biol Lett. 2012 Dec 23;8(6):1050-4 [PMID: 22915627]
  39. Bull Entomol Res. 2006 Jun;96(3):213-22 [PMID: 16768809]
  40. Pak J Biol Sci. 2008 Jul 15;11(14):1803-8 [PMID: 18817220]
  41. Mol Biol Rep. 2014 Sep;41(9):6039-49 [PMID: 24972568]
  42. Science. 2010 Feb 12;327(5967):812-8 [PMID: 20110467]
  43. Annu Rev Entomol. 2010;55:207-25 [PMID: 19725772]
  44. PLoS Biol. 2013 Oct;11(10):e1001685 [PMID: 24167443]
  45. PLoS One. 2015 Oct 14;10(10):e0140053 [PMID: 26465334]
  46. Mol Ecol. 2008 Jan;17(1):167-78 [PMID: 18173499]
  47. Front Physiol. 2019 Aug 27;10:1053 [PMID: 31507435]
  48. Mol Cells. 2013 Feb;35(2):87-92 [PMID: 23456329]
  49. J Exp Biol. 2017 Feb 15;220(Pt 4):551-563 [PMID: 27903701]
  50. Sci Rep. 2019 Mar 27;9(1):5239 [PMID: 30918312]
  51. J Econ Entomol. 2018 Aug 3;111(4):1940-1946 [PMID: 29905847]
  52. Annu Rev Entomol. 2008;53:161-78 [PMID: 17803457]
  53. Evol Appl. 2016 Feb 28;9(9):1096-1111 [PMID: 27695518]
  54. Biol Lett. 2009 Feb 23;5(1):93-6 [PMID: 19004752]
  55. Am Nat. 2003 Sep;162(3):332-42 [PMID: 12970841]
  56. New Phytol. 2012 Jun;194(4):1112-1122 [PMID: 22432639]
  57. Plant Physiol. 2012 Dec;160(4):1677-85 [PMID: 22972704]
  58. Ecol Lett. 2013 Sep;16(9):1195-205 [PMID: 23848550]
  59. J Insect Sci. 2014 May 30;14:78 [PMID: 25373225]
  60. J Biosci. 2007 Apr;32(3):447-56 [PMID: 17536164]
  61. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  62. Neotrop Entomol. 2011 Mar-Apr;40(2):155-63 [PMID: 21584394]
  63. Biol Rev Camb Philos Soc. 2005 Aug;80(3):489-513 [PMID: 16094810]
  64. J Insect Physiol. 2006 Oct;52(10):1027-33 [PMID: 16996534]
  65. Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):238-42 [PMID: 22184236]
  66. Philos Trans R Soc Lond B Biol Sci. 2019 Aug 5;374(1778):20180548 [PMID: 31203763]
  67. Biol Direct. 2006 Jul 27;1:21 [PMID: 16872524]

Word Cloud

Created with Highcharts 10.0.0experimentalclimatechangesimulationmultigenerationalinsectpesteconomicallyimportantcropsbeanstorage10generationstemperatureCOcontentdesignsLong-termsimulationspestssociallycrucialanticipatechallengesfeedinghumanitynot-so-farfutureMexicanweevilworldwideattackscommonseedsdesignedlongtermieincreasingairconcentrationcontrolledconditionsaccordingmodelpredictions2100Higherconcentrationsfavoredpest'segg-to-adultdevelopmentsurvivalevenhighfemalefecundityalsoinducedreductionfatincreaseproteinalterbodysizegeneticadaptationdetectedtotallipidhowevertraitsshowedsignsprocessFuturemethodssimilarkeystudyinglong-termeffectsMultigenerationalPhaseolusvulgarisZabrotessubfasciatuslifehistoryreciprocaltransplant

Similar Articles

Cited By (2)