Development of a hybrid model for a partially known intracellular signaling pathway through correction term estimation and neural network modeling.

Dongheon Lee, Arul Jayaraman, Joseph S Kwon
Author Information
  1. Dongheon Lee: Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA. ORCID
  2. Arul Jayaraman: Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA. ORCID
  3. Joseph S Kwon: Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA. ORCID

Abstract

Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NFκB signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively.

References

  1. FEBS J. 2009 Feb;276(4):886-902 [PMID: 19215296]
  2. Proc Math Phys Eng Sci. 2018 Sep;474(2217):20180305 [PMID: 30333709]
  3. PLoS Comput Biol. 2017 Jul 10;13(7):e1005655 [PMID: 28692642]
  4. J Biotechnol. 2007 Dec 1;132(4):418-25 [PMID: 17870200]
  5. BMC Bioinformatics. 2005 Jun 20;6:155 [PMID: 15967022]
  6. IEEE Life Sci Lett. 2016 Sep;2(3):31-34 [PMID: 29104899]
  7. Wiley Interdiscip Rev Syst Biol Med. 2016 May;8(3):227-41 [PMID: 26990581]
  8. Bioinformatics. 2009 Aug 1;25(15):1923-9 [PMID: 19505944]
  9. BMC Syst Biol. 2013 Feb 21;7:16 [PMID: 23433609]
  10. J Biomed Inform. 2001 Aug;34(4):221-48 [PMID: 11977806]
  11. IET Syst Biol. 2019 Aug;13(4):169-179 [PMID: 31318334]
  12. Science. 2009 Apr 3;324(5923):81-5 [PMID: 19342586]
  13. Crit Rev Eukaryot Gene Expr. 2010;20(2):87-103 [PMID: 21133840]
  14. Cold Spring Harb Perspect Biol. 2009 Oct;1(4):a000034 [PMID: 20066092]
  15. PLoS Comput Biol. 2013;9(8):e1003166 [PMID: 23935478]
  16. PLoS Comput Biol. 2014 Apr 10;10(4):e1003546 [PMID: 24722333]
  17. Sci Signal. 2015 Jul 14;8(385):ra69 [PMID: 26175492]
  18. PLoS Comput Biol. 2020 Nov 18;16(11):e1007575 [PMID: 33206658]
  19. Science. 2002 Mar 1;295(5560):1662-4 [PMID: 11872829]
  20. Bioinformatics. 1998;14(10):869-83 [PMID: 9927716]
  21. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):3932-7 [PMID: 27035946]
  22. Biotechnol Bioeng. 2017 Nov;114(11):2660-2667 [PMID: 28667749]
  23. Genome Res. 2003 Nov;13(11):2467-74 [PMID: 14559783]
  24. Biophysics (Nagoya-shi). 2005 Apr 21;1:25-31 [PMID: 27857550]
  25. Proc Math Phys Eng Sci. 2020 Feb;476(2234):20190800 [PMID: 32201481]
  26. Bull Math Biol. 2018 Jun;80(6):1578-1595 [PMID: 29611108]
  27. EMBO J. 1995 Jun 1;14(11):2580-8 [PMID: 7781611]
  28. Proc Math Phys Eng Sci. 2017 Jan;473(2197):20160446 [PMID: 28265183]
  29. BMC Syst Biol. 2010 Sep 23;4:131 [PMID: 20863397]
  30. J R Soc Interface. 2017 Jun;14(131): [PMID: 28615495]
  31. Mol Biol Cell. 2018 Jun 15;29(12):1502-1517 [PMID: 29668363]
  32. Sci Adv. 2017 Apr 26;3(4):e1602614 [PMID: 28508044]
  33. Bioprocess Biosyst Eng. 2019 Nov;42(11):1853-1865 [PMID: 31375965]
  34. Bioinformatics. 2007 Oct 15;23(20):2747-53 [PMID: 17768165]
  35. PLoS Comput Biol. 2017 Feb 6;13(2):e1005379 [PMID: 28166222]
  36. Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8391-6 [PMID: 26106158]
  37. Elife. 2015 Oct 21;4:e08931 [PMID: 26488364]
  38. Sci Adv. 2020 Apr 15;6(16):eaay2631 [PMID: 32426452]
  39. Sci Rep. 2016 Feb 11;6:20772 [PMID: 26865316]
  40. BMC Neurosci. 2006 Oct 30;7 Suppl 1:S10 [PMID: 17118154]

MeSH Term

Algorithms
Apoptosis
Least-Squares Analysis
Lipopolysaccharides
NF-kappa B
Neural Networks, Computer
Signal Transduction

Chemicals

Lipopolysaccharides
NF-kappa B

Word Cloud

Created with Highcharts 10.0.0modelsignalinghybridfirst-principleANNpathwaydevelopednetworkdynamicscorrectionaccurateintracellulardiscrepancymodelingapproachneuralpredictionsoriginalproposedvaluestermsmeasurementsDevelopingimportantstepemployingsystemsbiologyapproachesanalyzeHoweverdifficultsincerequiresin-depthmechanisticunderstandingsSinceunderlyingmechanismsreactionstructurefullyunderstoodsignificantexistspredictedactualMotivatedconsiderationsworkproposescombinesartificialsurpassFirstdeterminesoptimalsubsetstateswhosecorrectedexaminingcorrelationstateoutputsrelativeorderSecondL2-regularizedleast-squaresproblemsolvedinfernecessaryminimizeavailableThirdgeneralizerelationshipssystemLastlycoupledfinalizedevelopmentwillpossessgeneralizedpredictioncapabilitiesretaininginterpretabilitysuccessfullyvalidatedmethodologytwocasestudiessimplifiedapoptosislipopolysaccharide-inducedNFκBpathwaysdevelopmodelssilicovitrorespectivelyDevelopmentpartiallyknowntermestimation

Similar Articles

Cited By