The Polyaminoisoprenyl Potentiator NV716 Revives Old Disused Antibiotics against Intracellular Forms of Infection by Pseudomonas aeruginosa.

Gang Wang, Jean-Michel Brunel, Jean-Michel Bolla, Françoise Van Bambeke
Author Information
  1. Gang Wang: Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
  2. Jean-Michel Brunel: Aix Marseille Univ, INSERM, SSA, MCT, Marseille, France.
  3. Jean-Michel Bolla: Aix Marseille Univ, INSERM, SSA, MCT, Marseille, France.
  4. Françoise Van Bambeke: Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium francoise.vanbambeke@uclouvain.be. ORCID

Abstract

Active efflux confers intrinsic resistance to multiple antibiotics in , including old disused molecules. Beside resistance, intracellular survival is another reason for failure to eradicate bacteria with antibiotics. We evaluated the capacity of polyaminoisoprenyl potentiators (designed as efflux pump inhibitors [EPIs]) NV716 and NV731 compared to PAβN to restore the activity of disused antibiotics (doxycycline, chloramphenicol [substrates for efflux], and rifampin [nonsubstrate]) in comparison with ciprofloxacin against intracellular (strains with variable efflux levels) in THP-1 monocytes exposed over 24 h to antibiotics alone (0.003 to 100× MIC) or combined with EPIs. Pharmacodynamic parameters (apparent static concentrations [] and maximal relative efficacy []) were calculated using the Hill equation of concentration-response curves. PAβN and NV731 moderately reduced (0 to 4 doubling dilutions) antibiotic MICs but did not affect their intracellular activity. NV716 markedly reduced (1 to 16 doubling dilutions) the MIC of all antibiotics (substrates or not for efflux; strains expressing efflux or not); it also improved their relative potency and maximal efficacy (i.e., lower ; more negative ) intracellularly. In parallel, NV716 reduced the persister fraction in stationary cultures when combined with ciprofloxacin. In contrast to PAβN and NV731, which act only as EPIs against extracellular bacteria, NV716 can resensitize to antibiotics whether they are substrates or not for efflux, both extracellularly and intracellularly. This suggests a complex mode of action that goes beyond a simple inhibition of efflux to reduce bacterial persistence. NV716 appears to be a useful adjuvant, including to disused antibiotics with low antipseudomonal activity, to improve their activity, including against intracellular .

Keywords

References

  1. J Mol Microbiol Biotechnol. 2001 Apr;3(2):255-64 [PMID: 11321581]
  2. Infect Immun. 1994 Aug;62(8):3485-93 [PMID: 8039920]
  3. J Med Chem. 2019 Oct 10;62(19):8665-8681 [PMID: 31063379]
  4. Open Microbiol J. 2010 Dec 13;4:106-15 [PMID: 21270937]
  5. Nature. 2000 Aug 31;406(6799):959-64 [PMID: 10984043]
  6. PLoS Pathog. 2019 Jun 20;15(6):e1007812 [PMID: 31220187]
  7. Front Microbiol. 2017 Dec 22;8:2585 [PMID: 29312259]
  8. Antimicrob Agents Chemother. 2006 Jun;50(6):2156-66 [PMID: 16723578]
  9. Antimicrob Agents Chemother. 2001 Jan;45(1):105-16 [PMID: 11120952]
  10. J Infect Dis. 2008 Apr 15;197(8):1079-81 [PMID: 18419525]
  11. Int J Antimicrob Agents. 1999 Jun;12(1):47-52 [PMID: 10389647]
  12. Methods Mol Biol. 2016;1333:147-57 [PMID: 26468107]
  13. J Bacteriol. 2007 Nov;189(21):7600-9 [PMID: 17720796]
  14. Nature. 1964 Jul 18;203:257-8 [PMID: 14201758]
  15. PLoS One. 2013;8(3):e60666 [PMID: 23544160]
  16. Curr Opin Drug Discov Devel. 2006 Mar;9(2):218-30 [PMID: 16566292]
  17. Cell Tissue Res. 2010 Oct;342(1):67-73 [PMID: 20838814]
  18. Nat Rev Microbiol. 2019 Jul;17(7):441-448 [PMID: 30980069]
  19. Clin Microbiol Infect. 2007 Jun;13(6):560-78 [PMID: 17266725]
  20. Antimicrob Agents Chemother. 2017 Aug 24;61(9): [PMID: 28630188]
  21. Trends Mol Med. 2005 Aug;11(8):382-9 [PMID: 15996519]
  22. Future Med Chem. 2020 Jul;12(13):1253-1279 [PMID: 32538147]
  23. Eur J Clin Microbiol Infect Dis. 1991 Feb;10(2):100-6 [PMID: 1864271]
  24. ACS Infect Dis. 2018 Jul 13;4(7):1041-1047 [PMID: 29771109]
  25. Front Microbiol. 2019 Aug 13;10:1771 [PMID: 31456758]
  26. J Biol Chem. 2009 Apr 10;284(15):9955-64 [PMID: 19211560]
  27. J Antimicrob Chemother. 2015 Aug;70(8):2177-81 [PMID: 26063727]
  28. Antimicrob Agents Chemother. 2009 Apr;53(4):1434-42 [PMID: 19188393]
  29. Antimicrob Agents Chemother. 2006 Mar;50(3):841-51 [PMID: 16495241]
  30. PLoS One. 2011;6(5):e19970 [PMID: 21625641]
  31. Int J Antimicrob Agents. 2011 Jul;38(1):52-9 [PMID: 21596526]
  32. Int J Antimicrob Agents. 2019 Mar;53(3):337-342 [PMID: 30423343]
  33. Clin Microbiol Infect. 2020 Sep;26(9):1254.e1-1254.e8 [PMID: 31404671]
  34. Antimicrob Agents Chemother. 2016 Oct 21;60(11):6735-6741 [PMID: 27572406]
  35. Antimicrob Agents Chemother. 2013 May;57(5):2310-8 [PMID: 23478951]
  36. Antimicrob Agents Chemother. 2000 Dec;44(12):3428-31 [PMID: 11083651]
  37. PLoS One. 2016 May 06;11(5):e0154490 [PMID: 27152508]
  38. Front Microbiol. 2018 Jul 10;9:1455 [PMID: 30042739]
  39. Sci Rep. 2017 Jan 16;7:40208 [PMID: 28091521]
  40. Biochem Pharmacol. 2006 Mar 30;71(7):910-8 [PMID: 16427026]
  41. Infect Dis Clin North Am. 2003 Sep;17(3):615-34 [PMID: 14711080]
  42. Front Microbiol. 2018 Feb 08;9:129 [PMID: 29472905]
  43. Bioorg Med Chem. 2013 Mar 1;21(5):1174-9 [PMID: 23352753]
  44. J Antimicrob Chemother. 2007 Jun;59(6):1223-9 [PMID: 17229832]
  45. Front Microbiol. 2020 Nov 23;11:587364 [PMID: 33329458]
  46. FEMS Microbiol Lett. 2009 Aug;297(1):73-9 [PMID: 19508279]
  47. J Med Chem. 2020 Sep 24;63(18):10496-10508 [PMID: 32840108]
  48. Nat Commun. 2020 May 4;11(1):2200 [PMID: 32366839]

MeSH Term

Anti-Bacterial Agents
Chloramphenicol
Ciprofloxacin
Drug Resistance, Multiple, Bacterial
Microbial Sensitivity Tests
Pseudomonas aeruginosa

Chemicals

Anti-Bacterial Agents
Ciprofloxacin
Chloramphenicol

Word Cloud

Created with Highcharts 10.0.0effluxantibioticsNV716intracellularactivityincludingdisusedbacteriaNV731PAβNreducedresistanceciprofloxacinstrains0MICcombinedEPIs[]maximalrelativeefficacydoublingdilutionsantibioticsubstratesintracellularlyPseudomonasaeruginosaActiveconfersintrinsicmultipleoldmoleculesBesidesurvivalanotherreasonfailureeradicateevaluatedcapacitypolyaminoisoprenylpotentiatorsdesignedpumpinhibitors[EPIs]comparedrestoredoxycyclinechloramphenicol[substratesefflux]rifampin[nonsubstrate]comparisonvariablelevelsTHP-1monocytesexposed24halone003100×PharmacodynamicparametersapparentstaticconcentrationscalculatedusingHillequationconcentration-responsecurvesmoderately4MICsaffectmarkedly116expressingalsoimprovedpotencyielowernegativeparallelpersisterfractionstationaryculturescontrastactextracellularcanresensitizewhetherextracellularlysuggestscomplexmodeactiongoesbeyondsimpleinhibitionreducebacterialpersistenceappearsusefuladjuvantlowantipseudomonalimprovePolyaminoisoprenylPotentiatorRevivesOldDisusedAntibioticsIntracellularFormsInfectiondruginhibitor

Similar Articles

Cited By (7)