Exact neural mass model for synaptic-based working memory.

Halgurd Taher, Alessandro Torcini, Simona Olmi
Author Information
  1. Halgurd Taher: Inria Sophia Antipolis Méditerranée Research Centre, MathNeuro Team, Sophia Antipolis, France.
  2. Alessandro Torcini: Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise,CNRS, UMR 8089, Cergy-Pontoise, France.
  3. Simona Olmi: Inria Sophia Antipolis Méditerranée Research Centre, MathNeuro Team, Sophia Antipolis, France. ORCID

Abstract

A synaptic theory of Working Memory (WM) has been developed in the last decade as a possible alternative to the persistent spiking paradigm. In this context, we have developed a neural mass model able to reproduce exactly the dynamics of heterogeneous spiking neural networks encompassing realistic cellular mechanisms for short-term synaptic plasticity. This population model reproduces the macroscopic dynamics of the network in terms of the firing rate and the mean membrane potential. The latter quantity allows us to gain insight of the Local Field Potential and electroencephalographic signals measured during WM tasks to characterize the brain activity. More specifically synaptic facilitation and depression integrate each other to efficiently mimic WM operations via either synaptic reactivation or persistent activity. Memory access and loading are related to stimulus-locked transient oscillations followed by a steady-state activity in the β-γ band, thus resembling what is observed in the cortex during vibrotactile stimuli in humans and object recognition in monkeys. Memory juggling and competition emerge already by loading only two items. However more items can be stored in WM by considering neural architectures composed of multiple excitatory populations and a common inhibitory pool. Memory capacity depends strongly on the presentation rate of the items and it maximizes for an optimal frequency range. In particular we provide an analytic expression for the maximal memory capacity. Furthermore, the mean membrane potential turns out to be a suitable proxy to measure the memory load, analogously to event driven potentials in experiments on humans. Finally we show that the γ power increases with the number of loaded items, as reported in many experiments, while θ and β power reveal non monotonic behaviours. In particular, β and γ rhythms are crucially sustained by the inhibitory activity, while the θ rhythm is controlled by excitatory synapses.

References

  1. Curr Biol. 2009 Nov 17;19(21):1846-52 [PMID: 19913428]
  2. Neuroscience. 2007 May 25;146(3):1082-108 [PMID: 17418956]
  3. J Neurosci. 1996 Aug 15;16(16):5154-67 [PMID: 8756444]
  4. J Neurosci. 2010 Mar 24;30(12):4496-502 [PMID: 20335486]
  5. Cereb Cortex. 1997 Jun;7(4):374-85 [PMID: 9177767]
  6. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12828-33 [PMID: 23858465]
  7. J Cogn Neurosci. 2011 Oct;23(10):3008-20 [PMID: 21452933]
  8. PLoS Comput Biol. 2017 Dec 29;13(12):e1005881 [PMID: 29287081]
  9. Chaos. 2008 Sep;18(3):037113 [PMID: 19045487]
  10. Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3779-84 [PMID: 21321198]
  11. J Neurosci. 2012 Feb 22;32(8):2747-61 [PMID: 22357858]
  12. J Exp Psychol Gen. 1999 Sep;128(3):309-331 [PMID: 10513398]
  13. Cereb Cortex. 1997 Apr-May;7(3):237-52 [PMID: 9143444]
  14. Nat Neurosci. 2002 Aug;5(8):805-11 [PMID: 12134152]
  15. Cereb Cortex. 2016 Sep;26(9):3772-84 [PMID: 26286916]
  16. J Neurosci. 2018 Aug 8;38(32):7020-7028 [PMID: 30089641]
  17. J Neurosci. 2000 Jan 1;20(1):RC50 [PMID: 10627627]
  18. J Math Neurosci. 2012 Nov 22;2(1):12 [PMID: 23174267]
  19. Neuron. 2011 Mar 24;69(6):1188-203 [PMID: 21435562]
  20. J Math Neurosci. 2020 Apr 6;10(1):5 [PMID: 32253526]
  21. Front Comput Neurosci. 2020 May 28;14:47 [PMID: 32547379]
  22. Neuron. 2017 Jan 18;93(2):323-330 [PMID: 28041884]
  23. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  24. PLoS Comput Biol. 2018 Sep 6;14(9):e1006430 [PMID: 30188889]
  25. Science. 2008 Mar 14;319(5869):1543-6 [PMID: 18339943]
  26. Front Syst Neurosci. 2015 Dec 18;9:173 [PMID: 26733825]
  27. Behav Brain Sci. 2001 Feb;24(1):87-114; discussion 114-85 [PMID: 11515286]
  28. PLoS Comput Biol. 2014 Sep 25;10(9):e1003823 [PMID: 25255443]
  29. Curr Opin Behav Sci. 2015 Feb 1;1:23-31 [PMID: 26719851]
  30. Science. 1995 Mar 10;267(5203):1512-5 [PMID: 7878473]
  31. Neuron. 2018 Oct 24;100(2):463-475 [PMID: 30359609]
  32. Nat Commun. 2014 Dec 18;5:5768 [PMID: 25519874]
  33. Curr Dir Psychol Sci. 2010 Feb 1;19(1):51-57 [PMID: 20445769]
  34. Chaos. 2020 May;30(5):053121 [PMID: 32491891]
  35. Neural Comput. 2013 Dec;25(12):3207-34 [PMID: 24047318]
  36. Adv Cogn Psychol. 2016 Dec 31;12(4):209-232 [PMID: 28154616]
  37. Neural Comput. 1998 May 15;10(4):821-35 [PMID: 9573407]
  38. Science. 1971 Aug 13;173(3997):652-4 [PMID: 4998337]
  39. J Neurophysiol. 1989 Feb;61(2):331-49 [PMID: 2918358]
  40. Biophys J. 1972 Jan;12(1):1-24 [PMID: 4332108]
  41. J Neurosci. 2010 Mar 24;30(12):4440-8 [PMID: 20335480]
  42. J Neurosci. 1998 Jun 1;18(11):4244-54 [PMID: 9592102]
  43. Learn Mem. 1996 Sep-Oct;3(2-3):257-63 [PMID: 10456095]
  44. Neuron. 1995 Mar;14(3):477-85 [PMID: 7695894]
  45. Psychol Rev. 1992 Jan;99(1):122-49 [PMID: 1546114]
  46. J Neurosci. 2010 Feb 17;30(7):2694-9 [PMID: 20164353]
  47. Annu Rev Neurosci. 2001;24:167-202 [PMID: 11283309]
  48. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5323-8 [PMID: 9560274]
  49. Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16610-5 [PMID: 24062464]
  50. Science. 2016 Dec 2;354(6316):1136-1139 [PMID: 27934762]
  51. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21341-6 [PMID: 19926847]
  52. PLoS Comput Biol. 2008 Dec;4(12):e1000239 [PMID: 19079571]
  53. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):719-23 [PMID: 9012851]
  54. Cereb Cortex. 2000 Sep;10(9):910-23 [PMID: 10982751]
  55. Nature. 2004 Apr 15;428(6984):748-51 [PMID: 15085132]
  56. Neuron. 2016 Apr 6;90(1):152-164 [PMID: 26996084]
  57. Phys Rev Lett. 2018 Sep 21;121(12):128301 [PMID: 30296134]
  58. Nat Neurosci. 2008 Jul;11(7):823-33 [PMID: 18516033]
  59. Front Hum Neurosci. 2014 Jan 24;8:6 [PMID: 24478672]
  60. Science. 2005 Feb 18;307(5712):1121-4 [PMID: 15718474]
  61. PLoS Comput Biol. 2019 May 9;15(5):e1007019 [PMID: 31071085]
  62. Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):394-399 [PMID: 28028221]
  63. Eur J Neurosci. 2002 Apr;15(8):1395-9 [PMID: 11994134]
  64. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):010901 [PMID: 25122239]
  65. Nat Neurosci. 2006 Apr;9(4):534-42 [PMID: 16547512]
  66. Cereb Cortex. 2003 Dec;13(12):1369-74 [PMID: 14615302]
  67. Neuron. 2009 Sep 24;63(6):727-32 [PMID: 19778503]
  68. J Neurosci. 2016 Jan 13;36(2):489-505 [PMID: 26758840]
  69. Nature. 2005 Nov 24;438(7067):500-3 [PMID: 16306992]
  70. Nature. 1999 Jun 3;399(6735):470-3 [PMID: 10365959]
  71. J Neurosci. 2012 Sep 5;32(36):12411-20 [PMID: 22956832]

MeSH Term

Cerebral Cortex
Humans
Memory, Short-Term
Models, Neurological
Neuronal Plasticity
Neurons
Synapses

Word Cloud

Created with Highcharts 10.0.0synapticMemoryWMneuralactivityitemsmodelmemorydevelopedpersistentspikingmassdynamicsratemeanmembranepotentialloadinghumansexcitatoryinhibitorycapacityparticularexperimentsγpowerθβtheoryWorkinglastdecadepossiblealternativeparadigmcontextablereproduceexactlyheterogeneousnetworksencompassingrealisticcellularmechanismsshort-termplasticitypopulationreproducesmacroscopicnetworktermsfiringlatterquantityallowsusgaininsightLocalFieldPotentialelectroencephalographicsignalsmeasuredtaskscharacterizebrainspecificallyfacilitationdepressionintegrateefficientlymimicoperationsviaeitherreactivationaccessrelatedstimulus-lockedtransientoscillationsfollowedsteady-stateβ-γbandthusresemblingobservedcortexvibrotactilestimuliobjectrecognitionmonkeysjugglingcompetitionemergealreadytwoHowevercanstoredconsideringarchitecturescomposedmultiplepopulationscommonpooldependsstronglypresentationmaximizesoptimalfrequencyrangeprovideanalyticexpressionmaximalFurthermoreturnssuitableproxymeasureloadanalogouslyeventdrivenpotentialsFinallyshowincreasesnumberloadedreportedmanyrevealnonmonotonicbehavioursrhythmscruciallysustainedrhythmcontrolledsynapsesExactsynaptic-basedworking

Similar Articles

Cited By