Motor Skill Learning-Induced Functional Plasticity in the Primary Somatosensory Cortex: A Comparison Between Young and Older Adults.

Claudia Predel, Elisabeth Kaminski, Maike Hoff, Daniel Carius, Arno Villringer, Patrick Ragert
Author Information
  1. Claudia Predel: Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
  2. Elisabeth Kaminski: Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
  3. Maike Hoff: Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
  4. Daniel Carius: Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany.
  5. Arno Villringer: Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
  6. Patrick Ragert: Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

Abstract

While in young adults (YAs) the underlying neural mechanisms of motor learning are well-studied, studies on the involvement of the somatosensory system during motor skill learning in older adults (OAs) remain sparse. Therefore, the aim of the present study was to investigate motor learning-induced neuroplasticity in the primary somatosensory cortex (S1) in YAs and OAs. Somatosensory evoked potentials (SEPs) were used to quantify somatosensory activation prior and immediately after motor skill learning in 20 right-handed healthy YAs (age range: 19-35 years) and OAs (age range: 57-76 years). Participants underwent a single session of a 30-min co-contraction task of the abductor pollicis brevis (APB) and deltoid muscle. To assess the effect of motor learning, muscle onset asynchrony (MOA) between the onsets of the contractions of both muscles was measured using electromyography monitoring. In both groups, MOA shortened significantly during motor learning, with YAs showing bigger reductions. No changes were found in SEP amplitudes after motor learning in both groups. However, a correlation analysis revealed an association between baseline SEP amplitudes of the N20/P25 and N30 SEP component and the motor learning slope in YAs such that higher amplitudes are related to higher learning. Hence, the present findings suggest that SEP amplitudes might serve as a predictor of individual motor learning success, at least in YAs. Additionally, our results suggest that OAs are still capable of learning complex motor tasks, showing the importance of motor training in higher age to remain an active part of our society as a prevention for care dependency.

Keywords

References

  1. J Electromyogr Kinesiol. 2016 Jun;28:17-22 [PMID: 26978587]
  2. J Neurophysiol. 2015 Feb 15;113(4):1156-64 [PMID: 25429121]
  3. J Neurosci. 1999 May 15;19(10):RC1 [PMID: 10234047]
  4. Electroencephalogr Clin Neurophysiol. 1987 Jul;68(4):277-86 [PMID: 2439307]
  5. Electroencephalogr Clin Neurophysiol Suppl. 1999;51:188-96 [PMID: 10590951]
  6. Exp Brain Res. 2003 Feb;148(4):525-32 [PMID: 12582838]
  7. Cereb Cortex. 1997 Mar;7(2):100-9 [PMID: 9087819]
  8. Hum Brain Mapp. 2014 Aug;35(8):3945-61 [PMID: 24453170]
  9. Brain. 2003 Apr;126(Pt 4):873-88 [PMID: 12615645]
  10. Neuron. 2011 Nov 3;72(3):443-54 [PMID: 22078504]
  11. J Psychiatr Res. 1975 Nov;12(3):189-98 [PMID: 1202204]
  12. Curr Opin Neurobiol. 2005 Apr;15(2):161-7 [PMID: 15831397]
  13. Neurosci Lett. 2001 Oct 19;312(2):99-102 [PMID: 11595344]
  14. Neuroscience. 2009 Sep 29;163(1):266-76 [PMID: 19524024]
  15. Science. 1993 Jul 30;261(5121):615-7 [PMID: 8342027]
  16. Psychiatry Res. 1998 Jul 15;83(1):7-22 [PMID: 9754701]
  17. Neuroimage. 2014 Feb 1;86:326-34 [PMID: 24125791]
  18. Neurology. 1984 Jan;34(1):123-6 [PMID: 6537837]
  19. Exp Brain Res. 2002 Oct;146(3):369-78 [PMID: 12232693]
  20. Eur J Appl Physiol. 2010 Oct;110(3):489-98 [PMID: 20526612]
  21. Electroencephalogr Clin Neurophysiol. 1970 Nov;29(5):450-60 [PMID: 4097436]
  22. Brain Res. 1993 Sep 24;623(1):33-40 [PMID: 8221091]
  23. Nature. 1995 Sep 14;377(6545):155-8 [PMID: 7675082]
  24. Clin Neurophysiol. 1999 Jan;110(1):133-45 [PMID: 10348332]
  25. Electroencephalogr Clin Neurophysiol. 1996 Jul;100(4):319-31 [PMID: 17441302]
  26. Clin Neurophysiol. 2006 Jan;117(1):131-43 [PMID: 16316782]
  27. Age (Dordr). 2013 Oct;35(5):1705-19 [PMID: 23007962]
  28. Perception. 2016 Dec;45(12):1387-1398 [PMID: 27507263]
  29. Electromyogr Clin Neurophysiol. 1983 Jan-Feb;23(1-2):49-59 [PMID: 6840038]
  30. Front Hum Neurosci. 2016 Nov 29;10:610 [PMID: 28018192]
  31. Neuroimage. 2012 Sep;62(3):1750-60 [PMID: 22732557]
  32. Front Aging Neurosci. 2015 Sep 15;7:176 [PMID: 26441638]
  33. Neuroimage. 2009 Oct 1;47(4):1854-62 [PMID: 19539766]
  34. Cereb Cortex. 2005 Aug;15(8):1089-102 [PMID: 15616134]
  35. Clin Interv Aging. 2008;3(4):673-90 [PMID: 19281060]
  36. Front Aging Neurosci. 2014 Feb 05;6:14 [PMID: 24550829]
  37. J Neurophysiol. 2005 Jul;94(1):512-8 [PMID: 15716371]
  38. Exp Brain Res. 1992;91(1):85-93 [PMID: 1301376]
  39. Neurology. 1993 Nov;43(11):2311-8 [PMID: 8232948]
  40. Sci Rep. 2016 Nov 25;6:37632 [PMID: 27886250]
  41. Front Hum Neurosci. 2017 Jan 31;11:16 [PMID: 28197085]
  42. Clin Neurophysiol. 1999 Sep;110(9):1589-600 [PMID: 10479026]
  43. Braz J Phys Ther. 2015 Jul-Aug;19(4):304-10 [PMID: 26443978]
  44. Psychol Rev. 1996 Jul;103(3):403-28 [PMID: 8759042]
  45. Electroencephalogr Clin Neurophysiol. 1984 Feb;59(1):29-43 [PMID: 6198163]
  46. J Gerontol B Psychol Sci Soc Sci. 2000 Sep;55(5):P295-303 [PMID: 10985294]
  47. J Neurosci. 2008 Jan 2;28(1):91-9 [PMID: 18171926]
  48. Neuropsychologia. 1971 Mar;9(1):97-113 [PMID: 5146491]
  49. Brain. 1991 Dec;114 ( Pt 6):2465-503 [PMID: 1782527]
  50. Ann N Y Acad Sci. 1964 May 8;112:93-142 [PMID: 14188117]
  51. J Neuroeng Rehabil. 2014 Mar 25;11:43 [PMID: 24666888]
  52. J Neurosci. 2003 Oct 8;23(27):9240-5 [PMID: 14534258]
  53. Front Aging Neurosci. 2018 Feb 06;10:25 [PMID: 29467646]
  54. Electroencephalogr Clin Neurophysiol. 1996 Jul;100(4):332-42 [PMID: 17441303]
  55. Hum Brain Mapp. 2010 Aug;31(8):1281-95 [PMID: 20082331]
  56. J Am Geriatr Soc. 1999 Sep;47(9):1077-81 [PMID: 10484249]
  57. Acta Neurol Scand. 2004 May;109(5):330-6 [PMID: 15080859]
  58. Brain Res. 2009 Mar 25;1262:38-47 [PMID: 19368842]
  59. Psychophysiology. 1995 Nov;32(6):526-37 [PMID: 8524987]
  60. Brain. 1998 Nov;121 ( Pt 11):2159-73 [PMID: 9827775]
  61. Brain Res. 1999 Feb 13;818(2):196-203 [PMID: 10082804]
  62. Neurology. 1979 Jan;29(1):21-8 [PMID: 570672]
  63. Exp Brain Res. 1999 Apr;125(4):435-9 [PMID: 10323289]
  64. J Gerontol. 1994 May;49(3):M133-9 [PMID: 8169335]
  65. Exp Brain Res. 2004 Aug;157(3):269-74 [PMID: 15221172]
  66. Int J Neurosci. 1989 Apr;45(3-4):277-82 [PMID: 2744969]

Word Cloud

Created with Highcharts 10.0.0motorlearningYAsSEPsomatosensoryOAsamplitudesagehigheradultsskillremainpresentSomatosensoryevokedrange:yearsmuscleMOAgroupsshowingsuggestyoungunderlyingneuralmechanismswell-studiedstudiesinvolvementsystemoldersparseThereforeaimstudyinvestigatelearning-inducedneuroplasticityprimarycortexS1potentialsSEPsusedquantifyactivationpriorimmediately20right-handedhealthy19-3557-76Participantsunderwentsinglesession30-minco-contractiontaskabductorpollicisbrevisAPBdeltoidassesseffectonsetasynchronyonsetscontractionsmusclesmeasuredusingelectromyographymonitoringshortenedsignificantlybiggerreductionschangesfoundHowevercorrelationanalysisrevealedassociationbaselineN20/P25N30componentsloperelatedHencefindingsmightservepredictorindividualsuccessleastAdditionallyresultsstillcapablecomplextasksimportancetrainingactivepartsocietypreventioncaredependencyMotorSkillLearning-InducedFunctionalPlasticityPrimaryCortex:ComparisonYoungOlderAdultsagingfunctionalplasticitysensorimotorintegrationpotential

Similar Articles

Cited By (4)