Transcriptome Analysis Reveals the Potential Role of Long Non-coding RNAs in Mammary Gland of Yak During Lactation and Dry Period.

Xiaoyun Wu, Xuelan Zhou, Lin Xiong, Jie Pei, Xixi Yao, Chunnian Liang, Pengjia Bao, Min Chu, Xian Guo, Ping Yan
Author Information
  1. Xiaoyun Wu: Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  2. Xuelan Zhou: Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  3. Lin Xiong: Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  4. Jie Pei: Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  5. Xixi Yao: Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  6. Chunnian Liang: Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  7. Pengjia Bao: Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  8. Min Chu: Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  9. Xian Guo: Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  10. Ping Yan: Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Abstract

The mammary gland is a remarkably dynamic organ of milk synthesis and secretion, and it experiences drastic structural and metabolic changes during the transition from dry periods to lactation, which involves the expression and regulation of numerous genes and regulatory factors. Long non-coding RNA (lncRNA) has considered as a novel type of regulatory factors involved in a variety of biological processes. However, their role in the lactation cycle of yak is still poorly understood. To reveal the involved mechanism, Ribo-zero RNA sequencing was employed to profile the lncRNA transcriptome in mammary tissue samples from yak at two physiological stages, namely lactation (LP) and dry period (DP). Notably, 1,599 lncRNA transcripts were identified through four rigorous steps and filtered through protein-coding ability. A total of 59 lncRNAs showed significantly different expression between two stages. Accordingly, the results of qRT-PCR were consistent with that of the transcriptome data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that target genes of differentially expressed lncRNAs (DELs) were involved in pathways related to lactation, such as ECM-receptor interaction, PI3K-Akt signaling pathway, biosynthesis of amino acids and focal adhesion etc. Finally, we constructed a lncRNA-gene regulatory network containing some well known candidate genes for milk yield and quality traits. This is the first study to demonstrate a global profile of lncRNA expression in the mammary gland of yak. These results contribute to a valuable resource for future genetic and molecular studies on improving milk yield and quality, and help us to gain a better understanding of the molecular mechanisms underlying lactogenesis and mammary gland development of yak.

Keywords

References

  1. Animals (Basel). 2019 Nov 10;9(11): [PMID: 31717620]
  2. Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11667-72 [PMID: 19571010]
  3. Nat Rev Mol Cell Biol. 2005 Sep;6(9):715-25 [PMID: 16231422]
  4. Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198 [PMID: 31066453]
  5. Reprod Domest Anim. 2019 Apr;54(4):678-686 [PMID: 30663809]
  6. Development. 2008 Mar;135(6):995-1003 [PMID: 18296651]
  7. Hum Mol Genet. 2011 Feb 15;20(4):705-18 [PMID: 21118898]
  8. BMC Genomics. 2018 Sep 18;19(1):684 [PMID: 30227846]
  9. RNA. 2014 Dec;20(12):1844-9 [PMID: 25316907]
  10. J Anim Sci. 2017 Oct;95(10):4239-4250 [PMID: 29108073]
  11. Physiol Genomics. 2005 Mar 21;21(1):1-13 [PMID: 15781588]
  12. RNA. 2011 May;17(5):878-91 [PMID: 21460236]
  13. Nature. 2002 Feb 14;415(6873):810-3 [PMID: 11845212]
  14. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  15. Acta Biol Hung. 2014 Mar;65(1):27-37 [PMID: 24561892]
  16. J Dairy Sci. 2012 May;95(5):2562-6 [PMID: 22541483]
  17. Nat Rev Genet. 2016 Jan;17(1):47-62 [PMID: 26666209]
  18. Nat Protoc. 2007;2(10):2366-82 [PMID: 17947979]
  19. Arch Anim Breed. 2020 Jul 22;63(2):249-259 [PMID: 32775610]
  20. Wiley Interdiscip Rev Dev Biol. 2012 Jul-Aug;1(4):533-57 [PMID: 22844349]
  21. J Biol Chem. 2007 Oct 26;282(43):31766-76 [PMID: 17716968]
  22. Cell Prolif. 2019 Jan;52(1):e12525 [PMID: 30362186]
  23. PLoS One. 2012;7(10):e47782 [PMID: 23094085]
  24. Noncoding RNA Res. 2016 Nov 12;1(1):43-50 [PMID: 30159410]
  25. J Dairy Sci. 2007 Jun;90(6):2966-70 [PMID: 17517737]
  26. J Biol Chem. 2004 Apr 9;279(15):14602-9 [PMID: 14709558]
  27. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22 [PMID: 21715386]
  28. Development. 2014 Dec;141(23):4618-27 [PMID: 25359727]
  29. Nature. 2012 Sep 6;489(7414):101-8 [PMID: 22955620]
  30. Reprod Domest Anim. 2018 Jun;53(3):759-768 [PMID: 29582471]
  31. Best Pract Res Clin Endocrinol Metab. 2011 Feb;25(1):43-60 [PMID: 21396574]
  32. PLoS Genet. 2012;8(7):e1002840 [PMID: 22911650]
  33. Oncogene. 2002 Jan 10;21(2):198-206 [PMID: 11803463]
  34. Front Genet. 2019 Jul 05;10:646 [PMID: 31333723]
  35. Placenta. 2014 Jan;35(1):44-9 [PMID: 24280234]
  36. Breast Cancer Res. 2006;8(2):203 [PMID: 16677411]
  37. Genomics. 2020 Jan;112(1):934-942 [PMID: 31200027]
  38. BMC Genomics. 2017 Jun 19;18(1):468 [PMID: 28629368]
  39. J Dairy Sci. 1989 Jun;72(6):1637-46 [PMID: 2668360]
  40. Nat Struct Mol Biol. 2015 May;22(5):370-6 [PMID: 25849144]
  41. J Dairy Sci. 2002 Feb;85(2):365-77 [PMID: 11913696]
  42. Adv Drug Deliv Rev. 2003 Apr 29;55(5):629-41 [PMID: 12706546]
  43. Cell Res. 2012 Oct;22(10):1413-5 [PMID: 22710800]
  44. Int J Mol Sci. 2011;12(8):4885-95 [PMID: 21954332]
  45. J Dairy Res. 2013 Nov;80(4):410-7 [PMID: 24124762]
  46. Nat Cell Biol. 2008 Jun;10(6):716-22 [PMID: 18469806]
  47. Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5781-6 [PMID: 16574773]
  48. Crit Rev Food Sci Nutr. 2014;54(3):292-302 [PMID: 24188303]
  49. BMC Genomics. 2014 Mar 24;15:226 [PMID: 24655368]
  50. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  51. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W345-9 [PMID: 17631615]
  52. PLoS One. 2011;6(9):e24432 [PMID: 21915327]
  53. Anim Genet. 2017 Feb;48(1):3-18 [PMID: 27615279]
  54. Anim Genet. 2009 Dec;40(6):909-16 [PMID: 19719788]
  55. Annu Rev Biochem. 2012;81:145-66 [PMID: 22663078]
  56. Cell. 2011 Aug 5;146(3):353-8 [PMID: 21802130]
  57. Nat Biotechnol. 2010 May;28(5):503-10 [PMID: 20436462]
  58. Cell Rep. 2015 May 19;11(7):1110-22 [PMID: 25959816]
  59. Nucleic Acids Res. 2013 Sep;41(17):e166 [PMID: 23892401]
  60. PLoS One. 2018 Jul 30;13(7):e0201628 [PMID: 30059556]
  61. Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 [PMID: 22127870]
  62. Cell. 2018 Jan 25;172(3):393-407 [PMID: 29373828]
  63. Nat Rev Genet. 2016 Oct;17(10):601-14 [PMID: 27573374]
  64. Amino Acids. 2009 May;37(1):89-95 [PMID: 18683019]
  65. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  66. Genome Biol. 2013;14(9):R95 [PMID: 24020486]
  67. J Dairy Sci. 2018 Dec;101(12):11061-11073 [PMID: 30268606]
  68. Nat Rev Genet. 2011 Feb;12(2):136-49 [PMID: 21245830]
  69. Genes (Basel). 2019 Sep 06;10(9): [PMID: 31500202]
  70. BMC Mol Biol. 2006 Oct 06;7:33 [PMID: 17026756]
  71. J Cell Biol. 2005 Nov 21;171(4):717-28 [PMID: 16301336]
  72. Cell Metab. 2006 Dec;4(6):475-90 [PMID: 17141631]

Word Cloud

Created with Highcharts 10.0.0mammarylactationlncRNAyakglandmilkexpressiongenesregulatoryinvolveddryfactorsLongRNAprofiletranscriptometwostageslncRNAsresultsyieldqualitymolecularremarkablydynamicorgansynthesissecretionexperiencesdrasticstructuralmetabolicchangestransitionperiodsinvolvesregulationnumerousnon-codingconsiderednoveltypevarietybiologicalprocessesHoweverrolecyclestillpoorlyunderstoodrevealmechanismRibo-zerosequencingemployedtissuesamplesphysiologicalnamelyLPperiodDPNotably1599transcriptsidentifiedfourrigorousstepsfilteredprotein-codingabilitytotal59showedsignificantlydifferentAccordinglyqRT-PCRconsistentdataGeneOntologyGOKyotoEncyclopediaGenesGenomesKEGGenrichmentanalysesindicatedtargetdifferentiallyexpressedDELspathwaysrelatedECM-receptorinteractionPI3K-AktsignalingpathwaybiosynthesisaminoacidsfocaladhesionetcFinallyconstructedlncRNA-genenetworkcontainingwellknowncandidatetraitsfirststudydemonstrateglobalcontributevaluableresourcefuturegeneticstudiesimprovinghelpusgainbetterunderstandingmechanismsunderlyinglactogenesisdevelopmentTranscriptomeAnalysisRevealsPotentialRoleNon-codingRNAsMammaryGlandYakLactationDryPeriodRiboZeroRNA-seq

Similar Articles

Cited By